To date, there is no long-term, stable, and uncertainty-quantified dataset of upper tropospheric humidity (UTH) that can be used for climate research. As intermediate step towards the overall goal of constructing such a climate data record (CDR) of UTH, we produced a new fundamental climate data record (FCDR) on the level of brightness temperature for microwave humidity sounders that will serve as basis for the CDR of UTH. Based on metrological principles, we constructed and implemented the measurement equation and the uncertainty propagation in the processing chain for the microwave humidity sounders. We reprocessed the level 1b data to obtain newly calibrated uncertainty quantified level 1c data in brightness temperature. Three aspects set apart this FCDR from previous attempts: (1) the data come in a ready-to-use NetCDF format; (2) the dataset provides extensive uncertainty information taking into account the different correlation behaviour of the underlying errors; and (3) inter-satellite biases have been understood and reduced by an improved calibration. Providing a detailed uncertainty budget on these data, this new FCDR provides valuable information for a climate scientist and also for the construction of the CDR.
The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NE Delta T) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NE Delta T over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NE Delta T, and periods of erratic behaviour, which show sudden increases of NE Delta T interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NE Delta T < 1 K. Due to overlapping life spans of the instruments, these reduced data records still cover without gaps the time since 1994 and may therefore serve as a first step for constructing long time series. Our method for count noise estimation, that has been used in this study, will be used in the data processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project "Fidelity and Uncertainty in Climate data records from Earth Observation (FIDUCEO)"
We theoretically analyze quasi-one-dimensional Bose-Einstein condensates under the influence of a harmonic trap and a narrow potential defect that moves through the atomic cloud. Performing simulations on the mean field level, we explore a robust mechanism in which a single dark soliton is nucleated and immediately pinned by the moving defect, making it possible to drag it to a desired position and release it there. We argue on a perturbative level that a defect potential which is attractive to the atoms is suitable for holding and moving dark solitons. The soliton generation protocol is investigated over a wide range of model parameters and its success is systematically quantified by a suitable fidelity measure, demonstrating its robustness against parameter variations, but also the need for tight focusing of the defect potential. Holding the soliton at a stationary defect for long times may give rise to dynamical instabilities, whose origin we explore within a Bogoliubov-de Gennes linearization analysis. We show that iterating the generation process with multiple defects offers a perspective for initializing multiple soliton dynamics with freely chosen initial conditions.
Measurements of the disk-integrated brightness temperature of the Moon at 89, 157, 183, and 190 GHz are presented for phase angles between -80° and 50° relative to full Moon. They were obtained with the Microwave Humidity Sounder (MHS) on NOAA-18 from 39 instances when the Moon appeared in the deep space view of the instrument. Polynomials were fitted to the measured values and the maximum temperature and the phase angle of its occurrence were determined. A comparison of these results with the predictions from three different models or rather parametrical expressions by Keihm, Mo & Kigawa, and Yang et al. revealed significantly larger phase lags for the lower frequencies in the measurements with MHS. As the Moon has appeared thousands of times in the field of view of all microwave sounders combined, this investigation demonstrates the potential of weather satellites for fine tuning models and establishing the Moon as extremely accurate calibration reference.
data record to earlier years. The new definition has the additional advantage that UTH can be calculated directly from given atmospheric profiles of humidity and temperature without a detour via radiative transfer simulations. Detailed uncertainty information in CDRs derived from satellite-based Earth observations are needed to support the application of the data in climate research 7,8. Providing such information on CDR level (level 2 or 3) has mainly been constrained by the availability of uncertainty information in the underlying FCDRs (level 1) in the past. Within the FIDUCEO project four new versions of such FCDRs were created, among them the FIDUCEO Microwave FCDR used as input for our UTH CDR. The FCDR includes information on observational uncertainty on pixel level, which is the result of rigorous uncertainty analyses based on metrological principles 9. These uncertainties are propagated to the spatially and temporally averaged quantities in the UTH CDR. Depending on the spatial and temporal correlation behaviour of the underlying error sources, uncertainties are divided into three different classes, enabling the user to propagate them to spatial and temporal averages of the data. The FIDUCEO UTH CDR is validated against an exisiting microwave UTH data record provided by the Satellite Application Facility on Climate Monitoring (CM-SAF). Differences in monthly tropical mean UTH do not exceed 2% RH and can be attributed to differences in the underlying FCDR and in the CDR processing in approximately equal parts. The structure of this paper is as follows: The Methods chapter introduces the satellite instruments, the UTH retrieval method and the new definition of UTH. Furthermore, a detailed description of the CDR processing is provided. This is followed by the Data Records chapter, which includes a description of the CDR data file format as well as the satellite missions and time periods covered. The subsequent chapter Technical Validation consists of an evaluation of the UTH retrieval performance, the comparison of our CDR with the CM-SAF UTH CDR and a description of uncertainties not estimated in the CDR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.