The peroxisomal proteins Pex1 and Pex6 form a heterohexameric type II AAA+ ATPase complex, which fuels essential protein transport across peroxisomal membranes. Mutations in either ATPase in humans can lead to severe peroxisomal disorders and early death. We present an extensive structural and biochemical analysis of the yeast Pex1/6 complex. The heterohexamer forms a trimer of Pex1/6 dimers with a triangular geometry that is atypical for AAA+ complexes. While the C-terminal nucleotide-binding domains (D2) of Pex6 constitute the main ATPase activity of the complex, both D2 harbour essential substrate-binding motifs. ATP hydrolysis results in a pumping motion of the complex, suggesting that Pex1/6 function involves substrate translocation through its central channel. Mutation of the Walker B motif in one D2 domain leads to ATP hydrolysis in the neighbouring domain, giving structural insights into inter-domain communication of these unique heterohexameric AAA+ assemblies.
The recognition of the conserved ATP-binding domains of Pex1p, p97 and NSF led to the discovery of the family of AAA-type ATPases. The biogenesis of peroxisomes critically depends on the function of two AAA-type ATPases, namely Pex1p and Pex6p, which provide the energy for import of peroxisomal matrix proteins. Peroxisomal matrix proteins are synthesized on free ribosomes in the cytosol and guided to the peroxisomal membrane by specific soluble receptors. At the membrane, the cargo-loaded receptors bind to a docking complex and the receptor-docking complex assembly is thought to form a dynamic pore which enables the transition of the cargo into the organellar lumen. The import cycle is completed by ubiquitination- and ATP-dependent dislocation of the receptor from the membrane to the cytosol, which is performed by the AAA-peroxins. Receptor ubiquitination and dislocation are the only energy-dependent steps in peroxisomal protein import. The export-driven import model suggests that the AAA-peroxins might function as motor proteins in peroxisomal import by coupling ATP-dependent removal of the peroxisomal import receptor and cargo translocation into the organelle.
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
The alarming threat of the spread of multidrug resistant bacteria currently leaves clinicians with very limited options to combat infections, especially those from Gram-negative bacteria. Hence, innovative strategies to deliver the next generation of antibacterials are urgently needed. Penicillin binding proteins (PBPs) are proven targets inhibited by β-lactam antibiotics. To discover novel, non-β-lactam inhibitors against PBP3 of Pseudomonas aeruginosa, we optimised a fluorescence assay based on a well-known thioester artificial substrate and performed a target screening using a focused protease-targeted library of 2455 compounds, which led to the identification of pyrrolidine-2,3-dione as a potential scaffold to inhibit the PBP3 target. Further chemical optimisation using a one-pot three-component reaction protocol delivered compounds with excellent target inhibition, initial antibacterial activities against P. aeruginosa and no apparent cytotoxicity. Our investigation revealed the key structural features; for instance, 3-hydroxyl group (R2) and a heteroaryl group (R1) appended to the N-pyrroldine-2,3-dione via methylene linker required for target inhibition. Overall, the discovery of the pyrrolidine-2,3-dione class of inhibitors of PBP3 brings opportunities to target multidrug-resistant bacterial strains and calls for further optimisation to improve antibacterial activity against P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.