Classical swine fever (CSF) has caused significant economic losses in industrialized pig production, and is still present in some European countries. Recent CSF outbreaks in Europe were mainly associated with strains of genogroup 2 (subgroup 2.3). Although there are extensive datasets regarding 2.3 strains, there is very little information available on longer fragments or whole classical swine fever virus (CSFV) genomes. Furthermore, there are no detailed analyses of the molecular epidemiology of CSFV wild boar isolates available. Nevertheless, complete genome sequences are supportive in phylogenetic analyses, especially in affected wild boar populations. Here, German CSFV strains of subgroup 2.3 were fully sequenced using two different approaches: (i) a universal panel of CSFV primers that were developed to amplify the complete genome in overlapping fragments for chain-terminator sequencing; and (ii) generation of a single full-length amplicon of the CSFV genome obtained by long-range RT-PCR for deep sequencing with next-generation sequencing technology. In total, five different strains of CSFV subgroup 2.3 were completely sequenced using these newly developed protocols. The approach was used to study virus spread and evolutionary history in German wild boar. For the first time, the results of our study clearly argue for the possibility of a long-term persistence of genotype 2.3 CSFV strains in affected regions at an almost undetectable level, even after long-term oral vaccination campaigns with intensive monitoring. Hence, regional persistence in wild boar populations has to be taken into account as an important factor in the continual outbreaks in affected areas.
Classical swine fever (CSF), a highly contagious disease of pigs caused by the classical swine fever virus (CSFV), can lead to important economic losses in the pig industry. Numerous CSFV isolates with various degrees of virulence have been isolated worldwide, ranging from low virulent strains that do not result in any apparent clinical signs to highly virulent strains that cause a severe peracute hemorrhagic fever with nearly 100% mortality. Knowledge of the molecular determinants of CSFV virulence is an important issue for effective disease control and development of safe and effective marker vaccines. In this review, the latest studies in the field of CSFV virulence are discussed. The topic of virulence is addressed from different angles; nonconventional approaches like codon pair usage and quasispecies are considered. Future research approaches in the field of CSFV virulence are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.