The recent development of dairy production is characterised by increasing herd sizes and therefore increasingly complicated visual observation of cow behaviour, which is traditionally the basis for diagnoses of production diseases. The limitation of the direct visual behavioural observation due to the increasing number of individual cows implies a growing need for an automated detection of changes within behavioural patterns to identify cows that show sickness behaviour. Sensor systems can be used to measure behavioural patterns such as activity, resting, feeding and rumination. Behavioural patterns change with the occurrence of sickness but also interact with external factors. Changes such as prolonged lying duration or shortened feeding duration caused by metabolic disorders or infections, respectively, then serve as a detection tool for sick individuals. The aim of the present review is to outline the impact of production diseases on the daily behavioural patterns of dairy cows by referring to sickness behaviour.
The present observational study investigated the application of multivariate cumulative sum (MCU-SUM) control charts by including variables selected by principal component analysis and partial least squares (PLS) regression to identify sickness behavior in dairy cattle. Therefore, sensor information (24 variables) was collected from 480 milking cows on a German dairy farm between September 2018 and December 2019. These variables were gathered in potentially different scenarios on farm. In total, data from 749 animals were available for evaluation. Variables were chosen based on the information of 499 cows (62 healthy; 437 sick) with 93,598 observations. The available diagnoses were collected together to form 1,025 sickness events. Hence, the different numbers of selected variables were included into the MCUSUM control charts. The performance of the MCUSUM control charts was evaluated by a 10-fold cross validation; hence, 90% of the original data set (749 cows) represented the training data, and the remaining 10% was used to test the training results. On average, the 10 training data sets included 124,871 observations with 1,392 sickness events, and the 10 testing data sets included, on average, 13,704 observations with 153 sickness events. The MCUSUM generated from the variables selected by principal component analysis showed comparable results in training and testing in all scenarios; therefore, 70.0 to 97.4% of the sickness events were detected. The false-positive rates ranged from 8.5 to 29.6%, and thus they created at least 2.6 false-positive alerts per day in testing. The variables selected by the PLS regression approach showed comparable sickness detection rates (70.0-99.9%) as well as false-positive rates (8.2-62.8%) in most scenarios. The best performing scenario produced 2.5 false-positive alerts in testing. Summarizing, both approaches showed potential for practical implementation; however, the PLS variable selection approach showed fewer false positives. Therefore, the PLS regression approach could generate a more reliable sickness detection algorithm, if combined with MCUSUM control charts, and considered for practical implementation.
This study examined relevant variables for predicting the prevalence of pigs with a tail lesion in rearing (REA) and fattening (FAT). Tail lesions were recorded at two scoring days a week in six pens in both REA (10 batches, 840 scoring days) and FAT (5 batches, 624 scoring days). To select the variables that best explain the variation within the prevalence of pigs with a tail lesion, partial least squares regression models were used with the variable importance in projection (VIP) and regression coefficients (β) as selection criteria. In REA, five factors were extracted explaining 60.6% of the dependent variable’s variance, whereas in FAT five extracted factors explained 62.4% of the dependent variable’s variance. According to VIP and β, seven variables were selected in REA and six in FAT with the tail posture being the most important variable. In addition, skin lesions, treatment index in the suckling phase, water consumption (mean), activity time (mean; CV) and exhaust air rate (CV) were selected in REA. In FAT, additional musculoskeletal system issues, activity time (mean; CV) and exhaust air rate (mean; CV) were selected according to VIP and β. The selected variables indicate which variables should be collected in the stable to e.g., predict tail biting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.