The cellular mechanism(s) linking macrophages to norepinephrine (NE)-mediated regulation of thermogenesis have been a topic of debate. Here we identify sympathetic neuron-associated macrophages (SAMs) as a population of cells that mediate clearance of NE via expression of solute carrier family 6 member 2 (SLC6A2), an NE transporter, and monoamine oxidase A (MAOA), a degradation enzyme. Optogenetic activation of the sympathetic nervous system (SNS) upregulates NE uptake by SAMs and shifts the SAM profile to a more proinflammatory state. NE uptake by SAMs is prevented by genetic deletion of Slc6a2 or inhibition of the encoded transporter. We also observed an increased proportion of SAMs in the SNS of two mouse models of obesity. Genetic ablation of Slc6a2 in SAMs increases brown adipose tissue (BAT) content, causes browning of white fat, increases thermogenesis, and leads to substantial and sustained weight loss in obese mice. We further show that this pathway is conserved, as human sympathetic ganglia also contain SAMs expressing the analogous molecular machinery for NE clearance, which thus constitutes a potential target for obesity treatment.
BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4, also called FXR) is a ligand-activated transcription factor that, upon binding of bile acids, regulates the expression of genes involved in bile acid, fat, sugar, and amino acid metabolism. Transcript variants encode the FXR isoforms alpha 1, alpha 2, alpha 3, and alpha 4, which activate different genes that regulate metabolism. Little is known about the mechanisms by which the different isoforms regulate specific genes or how the expression of these genes affects the outcomes of patients given drugs that target FXR. METHODS: We determined genome-wide binding of FXR isoforms in mouse liver organoids that express individual FXR isoforms using chromatin immunoprecipitation, followed by sequencing analysis and DNA motif discovery. We validated regulatory DNA sequences by mobility shift assays and with luciferase reporters using mouse and human FXR isoforms. We analyzed mouse liver organoids and HepG2 cells that expressed the FXR isoforms using chromatin immunoprecipitation, quantitative polymerase chain reaction, and immunoblot assays. Organoids were analyzed for mitochondrial respiration, lipid droplet content, and triglyceride excretion. We used the FXR ligand obeticholic acid to induce FXR activity in organoids, cell lines, and mice. We collected data on the binding of FXR in mouse liver and the expression levels of FXR isoforms and gene targets in human liver tissue and primary human hepatocytes from the Gene Expression Omnibus. RESULTS: In mouse liver cells, 89% of sites that bound FXR were bound by only FXRa2 or FXRa4, via direct interactions with the DNA sequence motif ER-2. Via DNA binding, these isoforms regulated metabolic functions in liver cells, including carbon metabolism and lipogenesis. Incubation with obeticholic acid increased mitochondrial pyruvate transport and reduced insulin-induced lipogenesis in organoids that expressed FXRa2 but not FXRa1. In human liver tissues, levels of FXRa2 varied significantly and correlated with expression of genes predicted to be regulated via an ER-2 motif. CONCLUSIONS: Most metabolic effects regulated by FXR in mouse and human liver cells are regulated by the FXRa2 isoform via specific binding to ER-2 motifs. The expression level of FXRa2 in liver might be used to predict responses of patients to treatment with FXR agonists.
Summary Anti-obesity drugs in the amphetamine (AMPH) class act in the brain to reduce appetite and increase locomotion. They are also characterized by adverse cardiovascular effects with origin that, despite absence of any in vivo evidence, is attributed to a direct sympathomimetic action in the heart. Here, we show that the cardiac side effects of AMPH originate from the brain and can be circumvented by PEGylation (PEGyAMPH) to exclude its central action. PEGyAMPH does not enter the brain and facilitates SNS activity via theβ 2 -adrenoceptor, protecting mice against obesity by increasing lipolysis and thermogenesis, coupled to higher heat dissipation, which acts as an energy sink to increase energy expenditure without altering food intake or locomotor activity. Thus, we provide proof-of-principle for a novel class of exclusively peripheral anti-obesity sympathofacilitators that are devoid of any cardiovascular and brain-related side effects.
The complex direct and indirect interplay between adipocytes and various adipose tissue (AT)-resident immune cells plays an important role in maintaining local and whole-body insulin sensitivity. Adipocytes can directly interact with and activate AT-resident invariant natural killer T (iNKT) cells through CD1d-dependent presentation of lipid antigens, which is associated with anti-inflammatory cytokine production in lean AT (IL-4, IL-10). Whether alterations in the microenvironment, i.e., increased free fatty acids concentrations or altered cytokine/adipokine profiles as observed in obesity, directly affect adipocyte-iNKT cell communication and subsequent cytokine output is currently unknown. Here we show that the cytokine output of adipocyte-iNKT cell interplay is skewed by a lipid-rich microenvironment. Incubation of mature 3T3-L1 adipocytes with a mixture of saturated and unsaturated fatty acids specifically reduced insulin sensitivity and increased lipolysis. Reduced activation of the CD1d-invariant T-Cell Receptor (TCR) signaling axis was observed in Jurkat reporter cells expressing the invariant NKT TCR, while co-culture assays with a iNKT hybridoma cell line (DN32.D3) skewed the cytokine output toward reduced IL-4 secretion and increased IFNγ secretion. Importantly, co-culture assays of mature 3T3-L1 adipocytes with primary iNKT cells isolated from visceral AT showed a similar shift in cytokine output. Collectively, these data indicate that iNKT cells display considerable plasticity with respect to their cytokine output, which can be skewed toward a more pro-inflammatory profile in vitro by microenvironmental factors like fatty acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.