Reactive orange 16 (RO16) is the most widely used azo dye in Textile industry. Complex aromatic structures and resistivity to biological decay caused the dye pollutants incompletely treated by the conventional oxidative methods. The current study presents the electro-Fenton-based advanced oxidation treatment of RO16 dye and the process optimization by Taguchi-based design of experiment (DOE). Using a 500 mL volume lab-scale experimental setup, the process was first studied for the principal operational parameters (initial dye concentration (q); [H2O2]/[Fe+2] (R); current density (ρ); and temperature (T)) effect on decolourization (D R ) and COD removal (C R ). Then, by means of the L16 (44) orthogonal array (OA) formation, standard mean and signal-to-noise (S/N) ratio, the process was optimized for the response variables. The result showed the optimized result at q = 100 mg/L, R = 100, ρ = 8 mA/cm2, and T = 32 °C; with D R and C R as 90.023 and 84.344%, respectively. It was found that the current density affects the process most, followed by [H2O2]/[Fe+2] ratio, initial dye concentration, and temperature i.e., ρ > R > q > T. Also, with the analysis of variance (ANOVA), model equations for D R and C R were developed and its accuracy was verified for experimental results. At optimized conditions, the first order removal rate constants (k a ) were found from batch results. Additionally, the thermodynamic constants (ΔH e , ΔS e , and ΔG b ) were also calculated for the nature of heat-energy involved and temperature effect study on dye degradation. The results showed that the process was thermodynamically feasible, endothermic, and non-spontaneous with a lower energy barrier (E A = 46.7 kJ mol−1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.