Cybersecurity is a fast-evolving discipline that is always in the news over the last decade, as the number of threats rises and cybercriminals constantly endeavor to stay a step ahead of law enforcement. Over the years, although the original motives for carrying out cyberattacks largely remain unchanged, cybercriminals have become increasingly sophisticated with their techniques. Traditional cybersecurity solutions are becoming inadequate at detecting and mitigating emerging cyberattacks. Advances in cryptographic and Artificial Intelligence (AI) techniques (in particular, machine learning and deep learning) show promise in enabling cybersecurity experts to counter the ever-evolving threat posed by adversaries. Here, we explore AI's potential in improving cybersecurity solutions, by identifying both its strengths and weaknesses. We also discuss future research opportunities associated with the development of AI techniques in the cybersecurity field across a range of application domains.
Wireless Sensor Networks (WSNs) are expected to find wide applicability and increasing deployment in near future. In this paper, we propose a new protocol, Threshold Sensitive Stable Election Protocol (TSEP), which is reactive protocol using three levels of heterogeneity. Reactive networks, as opposed to proactive networks, respond immediately to changes in relevant parameters of interest. We evaluate performance of our protocol for a simple temperature sensing application and compare results of protocol with some other protocols LEACH, DEEC, SEP, ESEP and TEEN. And from simulation results it is observed that protocol outperforms concerning life time of sensing nodes used.
With the rapid increase in social networks and blogs, the social media services are increasingly being used by online communities to share their views and experiences about a particular product, policy and event. Due to economic importance of these reviews, there is growing trend of writing user reviews to promote a product. Nowadays, users prefer online blogs and review sites to purchase products. Therefore, user reviews are considered as an important source of information in Sentiment Analysis (SA) applications for decision making. In this work, we exploit the wealth of user reviews, available through the online forums, to analyze the semantic orientation of words by categorizing them into +ive and -ive classes to identify and classify emoticons, modifiers, general-purpose and domain-specific words expressed in the public’s feedback about the products. However, the un-supervised learning approach employed in previous studies is becoming less efficient due to data sparseness, low accuracy due to non-consideration of emoticons, modifiers, and presence of domain specific words, as they may result in inaccurate classification of users’ reviews. Lexicon-enhanced sentiment analysis based on Rule-based classification scheme is an alternative approach for improving sentiment classification of users’ reviews in online communities. In addition to the sentiment terms used in general purpose sentiment analysis, we integrate emoticons, modifiers and domain specific terms to analyze the reviews posted in online communities. To test the effectiveness of the proposed method, we considered users reviews in three domains. The results obtained from different experiments demonstrate that the proposed method overcomes limitations of previous methods and the performance of the sentiment analysis is improved after considering emoticons, modifiers, negations, and domain specific terms when compared to baseline methods.
Sink mobility has attracted much research interest in recent years because it can improve network performance such as energy efficiency and throughput. An energy-unconscious moving strategy is potentially harmful to the balance of the energy consumption among sensor nodes so as to aggravate the hotspot problem of sensor networks. In this paper, we propose an autonomous moving strategy for the mobile sinks in data-gathering applications. In our solution, a mobile sink approaches the nodes with high residual energy to force them to forward data for other nodes and tries to avoid passing by the nodes with low energy. We performed simulation experiments to compare our solution with other three data-gathering schemes. The simulation results show that our strategy cannot only extend network lifetime notably but also provides scalability and topology adaptability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.