Traditional power grid and its demand-side management (DSM) techniques are centralized and mainly focus on industrial consumers. The ignorance of residential and commercial sectors in DSM activities degrades the overall performance of a conventional grid. Therefore, the concept of DSM and demand response (DR) via residential sector makes the smart grid (SG) superior over the traditional grid. In this context, this paper proposes an optimized home energy management system (OHEMS) that not only facilitates the integration of renewable energy source (RES) and energy storage system (ESS) but also incorporates the residential sector into DSM activities. The proposed OHEMS minimizes the electricity bill by scheduling the household appliances and ESS in response to the dynamic pricing of electricity market. First, the constrained optimization problem is mathematically formulated by using multiple knapsack problems, and then solved by using the heuristic algorithms; genetic algorithm (GA), binary particle swarm optimization (BPSO), wind driven optimization (WDO), bacterial foraging optimization (BFO) and hybrid GA-PSO (HGPO) algorithms. The performance of the proposed scheme and heuristic algorithms is evaluated via MATLAB simulations. Results illustrate that the integration of RES and ESS reduces the electricity bill and peak-to-average ratio (PAR) by 19.94% and 21.55% respectively. Moreover, the HGPO algorithm based home energy management system outperforms the other heuristic algorithms, and further reduces the bill by 25.12% and PAR by 24.88%.
In this paper, we propose a new routing protocol for heterogeneous Wireless Body Area Sensor Networks (WBASNs); Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficient Multi-hop ProTocol (M-ATTEMPT). A prototype is defined for employing heterogeneous sensors on human body. Direct communication is used for real-time traffic (critical data) or on-demand data while Multi-hop communication is used for normal data delivery. One of the prime challenges in WBASNs is sensing of the heat generated by the implanted sensor nodes. The proposed routing algorithm is thermal-aware which senses the link Hot-spot and routes the data away from these links. Continuous mobility of human body causes disconnection between previous established links. So, mobility support and energy-management is introduced to overcome the problem. Linear Programming (LP) model for maximum information extraction and minimum energy consumption is presented in this study. MATLAB simulations of proposed routing algorithm are performed for lifetime and successful packet delivery in comparison with Multi-hop communication. The results show that the proposed routing algorithm has less energy consumption and more reliable as compared to Multi-hop communication.
In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.
Wireless Sensor Networks (WSNs) consist of large number of randomly deployed energy constrained sensor nodes. Sensor nodes have ability to sense and send sensed data to Base Station (BS). Sensing as well as transmitting data towards BS require high energy. In WSNs, saving energy and extending network lifetime are great challenges. Clustering is a key technique used to optimize energy consumption in WSNs. In this paper, we propose a novel clustering based routing technique: Enhanced Developed Distributed Energy Efficient Clustering scheme (EDDEEC) for heterogeneous WSNs. Our technique is based on changing dynamically and with more efficiency the Cluster Head (CH) election probability. Simulation results show that our proposed protocol achieves longer lifetime, stability period and more effective messages to BS than Distributed Energy Efficient Clustering (DEEC), Developed DEEC (DDEEC) and Enhanced DEEC (EDEEC) in heterogeneous environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.