In this work, using new inverse trigonometric kinematic displacement function, the bending solution of simply supported isotropic and transversely isotopic thin, moderately thin and thick square plates with aspect ratio variations is given. The paper introduces a new inverse trigonometric shear deformation theory (nITSDT) for the bi-directional bending study, which is variationally compatible. The transverse shear stress can be obtained directly from the constitutive relationships on the top and bottom surfaces of the plate that satisfy the shear stress free surface conditions, so the theory does not need a factor for shear correction. The dynamic version of the virtual work principle is used to obtain the governing equations and boundary conditions of the theory. The Finite Element (FE) solution has been developed using MATLAB code based on the present theory for simply supported laminated composite plates. In order to illustrate the efficiency of the proposed theory, the results of displacements and stresses are compared with those of other refined theories and exact solution. The findings obtained from the use of the theory are found to agree well with the precise results of elasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.