The number of Internet of Things (IoT) devices used in eldercare are increasing day by day and bringing big security challenges especially for health care organizations, IoT service providers and most seriously for the elderly users. Attackers launch many attacks using compromised IoT devices such as Distributed Denial of Services (DDoS), among others. To detect and prevent these types of attacks on IoT devices connected to the cellular network, it is essential to have a proper overview of the existing threats and vulnerabilities. The main objective of this work is to present and compare different machine learning algorithms for anomaly detection in the cellular IoT scenario. Five supervised machine learning algorithms, namely KNN, Naïve Bayes, Decision Tree and Logistic Regression are used and evaluated by their performance. We see that, for both normal (using a local test dataset) and attack traffic (CICDDoS2019 1 ) datasets, the accuracy and precision of the models are in average above 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.