The authors have described a lacrimal gland duct isolation technique in which the intact ducts remain viable and the role of duct cells in tear film secretion can be characterized. These data combined with the novel isolation facilitated understanding of the regulation mechanisms of ductal cell secretion at cellular and molecular levels under normal and pathologic conditions.
Cystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport. Using polarized cultures of homozygous F508del CFPAC-1 cells as a model for the human CF pancreatic ductal epithelium we showed that SeV was an efficient gene transfer agent when applied to the apical membrane. The presence of functional CFTR was confirmed using iodide efflux assay. CFTR expression had no effect on cell growth, monolayer integrity, and mRNA levels for key transporters in the duct cell (pNBC, AE2, NHE2, NHE3, DRA, and PAT-1), but did upregulate the activity of apical Cl-/HCO3- and Na+/H+ exchangers (NHEs). In CFTR-corrected cells, apical Cl-/HCO3- exchange activity was further enhanced by cAMP, a key feature exhibited by normal pancreatic duct cells. The cAMP stimulated Cl-/HCO3- exchange was inhibited by dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2-DIDS), but not by a specific CFTR inhibitor, CFTR(inh)-172. Our data show that SeV vector is a potential CFTR gene transfer agent for human pancreatic duct cells and that expression of CFTR in CF cells is associated with a restoration of Cl- and HCO3- transport at the apical membrane.
ObjectiveBiomedical investment trends in 2015 show a huge decrease of investment in gastroenterology. Since academic research usually provides the basis for industrial research and development (R&D), our aim was to understand research trends in the field of gastroenterology over the last 50 years and identify the most endangered areas.MethodsWe searched for PubMed hits for gastrointestinal (GI) diseases for the 1965–2015 period. Overall, 1,554,325 articles were analyzed. Since pancreatology was identified as the most endangered field of research within gastroenterology, we carried out a detailed evaluation of research activity in pancreatology.ResultsIn 1965, among the major benign GI disorders, 51.9% of the research was performed on hepatitis, 25.7% on pancreatitis, 21.7% on upper GI diseases and only 0.7% on the lower GI disorders. Half a century later, in 2015, research on hepatitis and upper GI diseases had not changed significantly; however, studies on pancreatitis had dropped to 10.7%, while work on the lower GI disorders had risen to 23.4%. With regard to the malignant disorders (including liver, gastric, colon, pancreatic and oesophageal cancer), no such large-scale changes were observed in the last 50 years. Detailed analyses revealed that besides the drop in research activity in pancreatitis, there are serious problems with the quality of the studies as well. Only 6.8% of clinical trials on pancreatitis were registered and only 5.5% of these registered trials were multicentre and multinational (more than five centres and nations), i.e., the kind that provides the highest level of impact and evidence level.ConclusionsThere has been a clear drop in research activity in pancreatitis. New international networks and far more academic R&D activities should be established in order to find the first therapy specifically for acute pancreatitis.
Bile salts modulate pHi, [Ca(2+)]i, and apical anion exchange activity in human pancreatic duct cells. The stimulatory effect of CDC on anion exchangers requires CFTR expression but not CFTR channel activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.