Post-translational modifications controlling a large number of biological functions are key aspects of protein diversity. They have an important role controlling cellular processes and may be advantageously utilized. Qualitative and quantitative analyses of post-translational modifications are useful for biomarker research and an integral part of the characterization of protein biopharmaceuticals. Due to its sensitivity and widespread applicability, mass spectrometry has become the core technology of the analysis especially when combined with chromatographic and other separation techniques. The aim of this article is to present a general overview of mass spectrometry applications in the field of PTM mapping. We also present the analytical challenges of particular PTMs, primarily focusing on the most frequent modifications.
For small - low molecular weight - molecule medicines a robust regulatory system has evolved over the years. This system guarantees high and constant quality of our (generic) medicines. Pharmaceutical equivalence and bioequivalence assessment are the pillars under that system. But there are complex medicines where the question of equivalence is more challenging to answer. For biologicals the paradigm of similarity rather than equality (the emergence of 'biosimilars') was developed in the past decade. This has been a program where an evolutionary, science based approach has been chosen by the frontrunner regulatory body, the EMA, with a 'learn and confirm' character. In addition, there is another group of complex drugs, the non-biological complex drugs, NBCDs, where the generic paradigm can be challenged as well. The NBCDs are defined as: 1. consisting of a complex multitude of closely related structures; 2. the entire multitude is the active pharmaceutical ingredient; 3. the properties cannot be fully characterized by physicochemical analysis and 4. the consistent, tightly controlled manufacturing process is fundamental to reproduce the product. NBCDs encompass product families such as the glatiramoids, liposomes, iron-carbohydrate colloids and many candidates of the group of the upcoming nanoparticulate systems. Following the main principles of regulatory pathways for biologicals (with appropriate product-by-product adjustments), instead of that for small molecules, would be the more logical strategy for these NBCDs. The status and outstanding regulatory issues for biosimilars and NBCD-similars/follow on versions were discussed at a conference in Budapest, Hungary (October 2014) and this commentary touches upon the issues brought up in the presentations, deliberations and conclusions.
Baicalein, the aglycone formed by hydrolysis of baicalin in the intestine, is well absorbed by passive diffusion but subjected to extensive intestinal glucuronidation. Efflux of baicalin, the low passive permeability glucuronide of baicalein from enterocytes, likely depends on a carrier-mediated transport. The present study was designed to explore potential drug-herb interaction by investigating the inhibitory effect of baicalin on the transport of reporter substrates by transporters and to identify the transporters responsible for the efflux of baicalin from enterocytes and hepatocytes. The interaction of baicalin with specific ABC transporters was studied using membranes from cells overexpressing human BCRP, MDR1, MRP2, MRP3 and MRP4. Baicalin was tested for its potential to inhibit vesicular transport by these transporters. The transport of baicalin by the selected transporters was also investigated. Transport by BCRP, MRP3 and MRP4 was inhibited by baicalin with an IC50 of 3.41 ± 1.83 μM, 14.01 ± 2.51 μM and 14.39 ± 5.69 μM respectively. Inhibition of MDR1 (IC50 = 94.84 ± 31.10 μM) and MRP2 (IC50 = 210.13 ± 110.49 μM) was less potent. MRP2 and BCRP are the apical transporters of baicalin that may mediate luminal efflux in enterocytes and biliary efflux in hepatocytes. The basolateral efflux of baicalin is likely mediated by MRP3 and MRP4 both in enterocytes and hepatocytes. Via inhibition of transport by ABC transporters, baicalin could interfere with the absorption and disposition of drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.