Avian malaria parasites can negatively affect many aspects of the life of the passerines. Though these parasites may strongly affect the health and thus migration patterns of the birds also during autumn, previous studies on avian malaria focused mainly on the spring migration and the breeding periods of the birds. We investigated whether the prevalence of blood parasites varies in relation to biometrical traits, body condition and arrival time in the European Robin (Erithacus rubecula) during autumn migration. We found no sex or age related differences in avian malaria prevalence and no relationship between infection status and body size or actual condition of the birds was found either. However, the timing of autumn migration differed marginally between infected and non-infected juveniles, so that parasitized individuals arrived later at the Hungarian stopover site. This is either because avian malaria infections adversely affect the migration timing or migration speed of the birds, or because later arriving individuals come from more distant populations with possibly higher blood parasite prevalence. The possible delay that parasites cause in the arrival time of the birds during autumn migration could affect the whole migratory strategy and the breeding success of the birds in the next season.
Rensch’s rule (RR) postulates that in comparisons across closely related species, male body size relative to female size increases with the average size of the species. This holds true in several vertebrate and also in certain free-living invertebrate taxa. Here, we document the validity of RR in avian lice using three families (Philopteridae, Menoponidae, and Ricinidae). Using published data on the body length of 989 louse species, subspecies, or distinct intraspecific lineages, we applied phylogenetic reduced major axis regression to analyse the body size of females vs. males while accounting for phylogenetic non-independence. Our results indicate that philopterid and menoponid lice follow RR, while ricinids exhibit the opposite pattern. In the case of philopterids and menoponids, we argue that larger-bodied bird species tend to host lice that are both larger in size and more abundant. Thus, sexual selection acting on males makes them relatively larger, and this is stronger than fecundity selection acting on females. Ricinids exhibit converse RR, likely because fecundity selection is stronger in their case.
Active conservation measures often entail supplementing scarce resources, such as food or nesting site to high conservation value species. We hypothesized that adequate nest material in reasonable distance is a scarce resource for Rooks breeding in open grassland habitats of Hungary. Here we show that Rooks willingly utilize large quantities of provided excess nesting material, and that this procedure may alter nest composition, and increase the number of successful pairs. Our results show that while nest height remains constant, twig diameter is significantly larger, the number of twigs used per nest is presumably smaller, and that the ratio of nests with fledglings is higher in a rookery where supplementary twigs were present. Providing twigs and branches in the vicinity of rookeries may serve as an active conservation measure to increase the number of nests in a rookery, and thus the potential number of nesting possibilities for Red-footed Falcons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.