A phosphate complexation model is developed, in an attempt to understand the mechanistic basis of chemically mediated phosphate removal. The model presented here is based on geochemical reaction modeling techniques and uses known surface reactions possible on hydrous ferric oxide (HFO). The types of surface reactions and their reaction stoichiometry and binding energies (logK values) are taken from literature models of phosphate interactions with iron oxides. The most important modeling parameter is the proportionality of converting moles of precipitated HFO to reactive site density. For well-mixed systems and phosphate exposed to ferric chloride during HFO precipitation, there is a phosphate capacity of 1.18 phosphate ions per iron atom. In poorly mixed systems with phosphate exposed to iron after HFO formation, the capacity decreased to 25% of the well-mixed value. The same surface complexation model can describe multiple data sets, by varying only a single parameter proportional to the availability of reactive oxygen functional groups. This reflects the unavailability of reactive oxygen groups to bind phosphate. Electron microscope images and dye adsorption experiments demonstrate changes in reactive surface area with aging of HFO particles. Engineering implications of the model/mechanism are highlighted. Water Environ. Res., 80, 428 (2008).
Batch and continuous experiments using model and real wastewaters were conducted to investigate the effect of metal salt (ferric and alum) addition in wastewater treatment and the corresponding phosphate removal from a design and operational perspective. Key factors expected to influence the phosphorus removal efficiency, such as pH, alkalinity, metal dose, metal type, initial and residual phosphate concentration, mixing, reaction time, age of flocs, and organic content of wastewater, were investigated. The lowest achievable concentration of orthophosphate under optimal conditions (0.01 to 0.05 mg/L) was similar for both aluminum and iron salts, with a broad optimum pH range of 5.0 to 7.0. Thus, in the typical operating range of wastewater treatment plants, pH is not a sensitive indicator of phosphorus removal efficiency. The most significant effect for engineering practice, apart from the metal dose, is that of mixing intensity and slow kinetic removal of phosphorus in contact with the chemical sludge formed. Experiments show that significant savings in chemical cost could be achieved by vigorously mixing the added chemical at the point of dosage and, if conditions allow, providing a longer contact time between the metal hydroxide flocs and the phosphate content of the wastewater. These conditions promoted the achievement of less than 0.1 mg/L residual orthophosphate content, even at lower metal-to-phosphorus molar ratios. These observations are consistent with the surface complexation model presented in a companion paper (Smith et al., 2008). Water Environ. Res., 80, 407 (2008).
Jar Test MethodologyEnvironmental and operational conditions influencing phosphorus removal processes were investigated in laboratory experiments.Coagulation-flocculation jar tests were carried out with model and real wastewater. More than 1500 model wastewater samples and 600 real wastewater samples were analyzed. Model wastewater
A three-pronged coordinated research effort was undertaken by cooperating utilities at three different experimental scales investigating bioaugmentation, enrichment and performance of anammox organisms in mainstream treatment. Two major technological components were applied: density-based sludge wasting by a selective cyclone to retain anammox granules and intermittent aeration to repress nitrite oxidizers. This paper evaluates process conditions and operation modes to direct more nitrogen to the resource-saving metabolic route of deammonification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.