Abstract. Curcumin (diferuloylmethane) is the main active ingredient of turmeric, a traditional herbal medicine and food of south Asia. Curcumin has been found to have a wide range of biological activities, including antioxidant, anti-inflammatory, chemopreventive and chemotherapeutic activities. Curcumin is currently being tested in clinical trials for treatment of various types of cancers, including multiple myeloma, pancreatic cancer and colon cancer. Although no toxicity associated with curcumin (even at very high doses) has been observed, the effects of curcumin in other solid tumors have been modest, primarily due to poor water solubility and poor bioavailability in tissues remote from the gastrointestinal tract. Therefore, there is a need for the discovery of curcumin analogs with better water solubility or greater bioavailability for the treatment of solid tumors such as prostate cancer. In this study, curcumin acetates and amino acid conjugates of curcumin were studied in terms of their proteasome inhibitory and antiproliferative effects against several human cancer cell lines. It was found that the water soluble amino acid conjugates of curcumin showed a potent antiproliferative effect and are potent proteasome inhibitors. Docking studies of the curcumin amino acid conjugates for proteasome inhibition were carried out to explain their biological activities. It is suggested that they may serve as the water soluble analogs of curcumin.
Abstract. (-)-Epigallocatechin gallate [(-)-EGCG] has beenimplicated in cancer chemoprevention and has been shown as an inhibitor of tumor proteasomal chymotrypsin-like activity in vitro and in vivo. However, EGCG is subjected to rapid biotransforming modifications such as methylation by catechol-O-methyltransferase (COMT) that limits its action. We recently reported that structure 7, an EGCG analog which should be resistant to COMT-mediated methylation and inactivation in cells, was able to inhibit the activity of purified 20S proteasome and cellular 26S proteasome. However, the involved molecular mechanism is unknown. Herein, we applied computational solution to understand the possible interaction between EGCG analogs including structure 7 and the proteasome ß5 subunit which is responsible for the chymotrypsin-like activity. We report that the ester carbonyls at C2 and C3 carbon atoms may be the active sites for nucleophilic attack in structure 7 and 5. Equally spaced carbon atoms in COMT-resistant structure 7 give more stable conformation and lower docked free energy than other EGCG analogs. The absence of a second gallate group in structure 16 and 21 significantly decreases the ability to inhibit the proteasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.