The medium cut-off (MCO) dialyzer has shown good clearance of large middle molecules, but its long-term effects are unclear. We investigated whether MCO hemodialysis (HD) over one year could reduce middle molecule levels and cell-free hemoglobin (CFH), without albumin loss. A prospective cohort study in 57 hemodialysis patients was conducted. The patients were assigned to the MCO dialyzer group or the high-flux dialyzer group, according to the HD machine they used. The reduction ratio (RR) and one-year changes in small and middle molecules and CFH were analyzed. Over a 12-month follow-up, MCO HD did not reduce the serum levels of middle molecules (lambda free light chain [FLC], from 135.7 ± 39.9 to 132.0 ± 39.1 mg/L; kappa FLC, from 168.2 ± 58.5 to 167.7 ± 65.8 mg/L; β2-microglobulin, from 25.6 ± 9.6 to 28.4 ± 4.8 mg/L) or albumin (from 3.96 ± 0.31 to 3.94 ± 0.37 g/dL). MCO HD provided excellent RR of lambda FLC (49.3 ± 10.3%), kappa FLC (69.6 ± 10.4%) and β2-microglobulin (80.9 ± 7.3%), compared to high-flux HD. CFH was also removed well during an MCO HD session (RR of CPH, 85.5 [78.7–97.3] %), but long-term change was not significant (from 57.8 [46.2–79.1] to 62.0 [54.6–116.7] mg/L). The MCO dialyzer can be used effectively and safely in conventional HD settings, but long-term effects on large middle molecules and CFH were not significant. Further studies are needed to verify clinical benefits of the MCO dialyzer.
The bacterial flagellar motor (BFM) is a nanomachine that rotates the flagellum to propel many known bacteria. The BFM is powered by ion transit across the cell membrane through the stator complex, a membrane protein. Different bacteria use various ions to run their BFM, but the majority of BFMs are powered by either proton (H+) or sodium (Na+) ions. The transmembrane (TM) domain of the B-subunit of the stator complex is crucial for ion selectivity, as it forms the ion channel in complex with TM3 and TM4 of the A-subunit. In this study, we reconstructed and engineered thirteen ancestral sequences of the stator B-subunit to evaluate the functional properties and ionic power source of the stator proteins at reconstruction nodes to evaluate the potential of ancestral sequence reconstruction (ASR) methods for stator engineering and to test specific motifs previously hypothesized to be involved in ion-selectivity. We found that all thirteen of our reconstructed ancient B-subunit proteins could assemble into functional stator complexes in combination with the contemporary Escherichia coli MotA-subunit to restore motility in stator deleted E. coli strains. The flagellar rotation of the thirteen ancestral MotBs was found to be Na+ independent which suggested that the F30/Y30 residue was not significantly correlated with sodium/proton phenotype, in contrast to what we had reported previously. Additionally, four among the thirteen reconstructed B-subunits were compatible with the A-subunit of Aquifex aeolicus and able to function in a sodium-independent manner. Overall, this work demonstrates the use of ancestral reconstruction to generate novel stators and quantify which residues are correlated with which ionic power source.
BackgroundHuman tuberculosis, which is caused by the pathogen Mycobacterium tuberculosis, remains a major public health concern. Increasing drug resistance poses a threat of disease resurgence and continues to cause considerable mortality worldwide, which necessitates the development of new drugs with improved efficacy. Thymoquinone (TQ), an essential compound of Nigella sativa, was previously reported as an active anti-tuberculosis agent.MethodsIn this study, the effects of TQ on intracellular mycobacterial replication are examined in macrophages. In addition, its effect on mycobacteria-induced NO production and pro-inflammatory responses were investigated in Mycobacterium tuberculosis (MTB)-infected Type II human alveolar and human myeloid cell lines.ResultsTQ at concentrations ranging from 12.5 to 25 μg/mL and 6.25 to 12.5 μg/mL reduced intracellular M. tuberculosis H37Rv and extensively drug-resistant tuberculosis (XDR-TB) 72 h post-infection in RAW 264.7 cells. TQ treatment also produced a concentration-dependent reduction in nitric oxide production in both H37Rv and XDR-TB infected RAW 264.7 cells. Furthermore, TQ reduced the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory molecules such as tumor necrosis factor-alpha (TNF-α) and interlukin-6 (IL-6) in H37Rv-infected cells and eventually reduced pathogen-derived stress in host cells.ConclusionsTQ inhibits intracellular H37Rv and XDR-TB replication and MTB-induced production of NO and pro-inflammatory molecules. Therefore, along with its anti-inflammatory effects, TQ represents a prospective treatment option to combat Mycobacterium tuberculosis infection.
Overproduction and accumulation of melanin in the skin will darken the skin and cause skin disorders. So far, components that can inhibit tyrosinase, a melanin synthase of melanocytes, have been developed and used as ingredients of cosmetics or pharmaceutical products. However, most of existing substances can only inhibit the biosynthesis of melanin while melanin that is already synthesized and deposited is not directly decomposed. Thus, their effects in decreasing melanin concentration in the skin are weak. To overcome the limitation of existing therapeutic agents, we started to develop a substance that could directly biodegrade melanin. We screened traditional fermented food microorganisms for their abilities to direct biodegrade melanin. As a result, we found that a kimchi-derived Pediococcus acidilactici PMC48 had a direct melanin-degrading effect. This PMC48 strain is a new strain, different from P. acidilactici strains reported so far. It not only directly degrades melanin, but also has tyrosinase-inhibiting effect. It has a direct melanindecomposition effect. It exceeds existing melanin synthesis-inhibiting technology. It is expected to be of high value as a raw material for melanin degradation drugs and cosmetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.