The glyoxylate shunt (GS) is a two-step metabolic pathway (isocitrate lyase, aceA; and malate synthase, glcB) that serves as an alternative to the tricarboxylic acid cycle. The GS bypasses the carbon dioxide-producing steps of the tricarboxylic acid cycle and is essential for acetate and fatty acid metabolism in bacteria. GS can be up-regulated under conditions of oxidative stress, antibiotic stress, and host infection, which implies that it plays important but poorly explored roles in stress defense and pathogenesis. In many bacterial species, including Pseudomonas aeruginosa, aceA and glcB are not in an operon, unlike in Escherichia coli. In P. aeruginosa, we explored relationships between GS genes and growth, transcription profiles, and biofilm formation. Contrary to our expectations, deletion of aceA in P. aeruginosa improved cell growth under conditions of oxidative and antibiotic stress. Transcriptome data suggested that aceA mutants underwent a metabolic shift toward aerobic denitrification; this was supported by additional evidence, including up-regulation of denitrification-related genes, decreased oxygen consumption without lowering ATP yield, increased production of denitrification intermediates (NO and N 2 O), and increased cyanide resistance. The aceA mutants also produced a thicker exopolysaccharide layer; that is, a phenotype consistent with aerobic denitrification. A bioinformatic survey across known bacterial genomes showed that only microorganisms capable of aerobic metabolism possess the glyoxylate shunt. This trend is consistent with the hypothesis that the GS plays a previously unrecognized role in allowing bacteria to tolerate oxidative stress.
In this study, we investigated differentially expressed proteins in Acinetobacter oleivorans cells during planktonic and biofilm growth by using 2-dimensional gel electrophoresis combined with matrixassisted laser desorption time-of-flight mass spectrometry. We focused on the role of oxidative stress resistance during biofilm formation using mutants defective in alkyl hydroperoxide reductase (AhpC) because its production in aged biofilms was enhanced compared to that in planktonic cells. Results obtained using an ahpC promoter-gfp reporter vector showed that aged biofilms expressed higher ahpC levels than planktonic cells at 48 h. However, at 24 h, ahpC expression was higher in planktonic cells than in biofilms. Deletion of ahpC led to a severe growth defect in rich media that was not observed in minimal media and promoted early biofilm formation through increased production of exopolysaccharide (EPS) and EPS gene expression. Increased endogenous H 2 O 2 production in the ahpC mutant in rich media enhanced biofilm formation, and this enhancement was not observed in the presence of antioxidants. Exogenous addition of H 2 O 2 promoted biofilm formation in wild type cells, which suggested that biofilm development is linked to defense against H 2 O 2 . Collectively, our data showed that EPS production caused by H 2 O 2 stress enhances biofilm formation in A. oleivorans.Many bacterial species exist in multicellular communities known as biofilms that can attach to any biotic or abiotic surface and at the interface between air and water in many different habitats 1 . The characteristics of cells within biofilms differ from those of planktonic cells. Among the biofilm-specific traits are antibiotic tolerance and resistance, slow growth, metabolic shift, production of extracellular matrix (ECM), and different cellular surface properties 2 . These physiological and phenotypical transitions result from the fine-tuned regulation of biofilm-specific genes involved in quorum sensing, the expression of small RNAs, cyclic diguanosine-5′-monophosphate (c-di-GMP) signaling, flagella biosynthesis, and ECM production 2,3,4 . The ECM is composed of exopolysaccharides, nucleic acids, and proteins, which surround biofilms and increases their tolerance to environmental chemicals 5,6 . This matrix also helps bacterial pathogens avoid host immune responses 7 . High ECM production creates a barrier that limits the penetration of various chemicals, including oxygen, nutrients, wastes, and antibiotics 8,9 . Because cells occupy different locations within a biofilm, they encounter different concentrations of chemicals, leading to heterogeneity in gene expression and physiology 2 .Nonpolar, diatomic oxygen gas is small and freely diffusible through biological membranes, which is an important characteristic for aerobic respiration, where it is used as an electron acceptor 10 . Reactive oxygen species (ROS) can be generated during either respiratory or fermentative cellular metabolism, mainly as an unavoidable consequence of electron transfer f...
Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.
Two-dimensional gel electrophoresis was conducted to investigate the effect of H2O2 on whole protein expression in Acinetobacter oleivorans DR1. Functional classification of 13 upregulated proteins using MALDI-TOF mass spectrometry showed relationships with oxidative stress, energy production and conversion, nucleotide and amino acid metabolism, membrane-related, ion transport, and chaperone-related functions. Alignment of OxyR-binding regions from Pseudomonas aeruginosa and Escherichia coli with promoters of identified proteins revealed that only ahpC, ahpF, and trxB (thioredoxin-disulfide reductase) genes, along with a newly found oprC (putative outer membrane receptor protein) gene, have OxyR-binding sites. The oxyR and ahpC mutants were more sensitive to H2O2 and showed growth defects in both nutritional and n-hexadecane-amended media. Four catalases present in the genome of A. oleivorans DR1 were not detected, which led us to confirm the expression and activity of those catalases in the presence of H2O2. The expression patterns of the four catalase genes differed at different concentrations of H2O2. Interestingly, the promoters of both known OxyR-controlled katG gene (AOLE_17390) and putative small catalase gene (AOLE_09800) have OxyR-binding sites. Gel-shift assay confirmed OxyR binding to the promoter regions of newly identified OxyR-controlled genes encoding OprC and a putative catalase. Hierarchical expression and OxyR-binding of several OxyR-controlled genes suggested that concentration is an important factor in inducing the set of genes under H2O2 stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.