During the screening for diacylglycerol acyltransferase (DGAT) inhibitors from natural products, the lupane-type triterpenoid betulinic acid was isolated from the methanol extract of Alnus hirsuta. It potently inhibited DGAT in the rat liver microsomes with an IC (50) value of 9.6 microM. Enzyme kinetic studies showed apparent Km and Ki values of 13.3 microM and 8.1 microM using [(14)C]oleoyl-CoA as a substrate. A decrease in the apparent Vmax was observed with betulinic acid, whereas the apparent Km remained constant. Therefore, a Lineweaver-Burk plot of DGAT inhibition by betulinic acid showed a non-competitive type of inhibition. In the cell-based assay, betulinic acid inhibited triglyceride (TG) formation by human HepG2 cells. These findings suggest that betulinic acid may be a potential lead compound in the treatment of obesity.
Low-temperature atmospheric pressure plasma technology has been used in agriculture and plant science by direct and indirect treatment of bio-samples. However, the cellular and molecular mechanisms affected by plasma-activated water (PAW) are largely unexplored. In this study, PAW generated from a surface dielectric barrier discharge (SDBD) device was used for plant development. Physicochemical analysis was performed to confirm the PAW properties that correlated with the plasma treatment time. Arabidopsis thaliana L. was utilized to study the effect of the PAW treatment in the early developmental stage. The plasma-activated water samples are denoted as PAW5 time in minutes (min), PAW7 min, PAW12 min, PAW19 min and PAW40 min with the plasma treatment time. Seedlings grown in the PAW5, PAW7 and PAW12 had increased root lengths while the root lengths were decreased in the PAW19 and PAW40. In the cellular level observation, the PAW treatment specifically increased the root hair numbers per unit of the root but suppressed the root hair length in the PAW, indicating that PAW mainly modulates the root hair cell density in the root. Furthermore, we found that the root hair density and length at PAW5 in maximal observed conditions were positively regulated by root developmental-related genes including COBRA-LIKE9 (COBL9), XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE9 (XTH9), XTH17, AUXIN1 (AUX1) and LIKE-AUXIN (LAX3).
This study was performed to investigate the mechanism of action of ursolic acid in terms of anti-Toxoplasma gondii effects, including immunomodulatory effects. We evaluated the anti-T. gondii effects of ursolic acid, and analyzed the production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines through co-cultured immune cells, as well as the expression of intracellular organelles of T. gondii. The subcellular organelles and granules of T. gondii, particularly rhoptry protein 18, microneme protein 8, and inner membrane complex sub-compartment protein 3, were markedly decreased when T. gondii was treated with ursolic acid, and their expressions were effectively inhibited. Furthermore, ursolic acid effectively increased the production of NO, ROS, interleukin (IL)-10, IL-12, granulocyte macrophage colony stimulating factor (GM-CSF), and interferon-β, while reducing the expression of IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) in T. gondii-infected immune cells. These results demonstrate that ursolic acid not only causes anti-T. gondii activity/action by effectively inhibiting the survival of T. gondii and the subcellular organelles of T. gondii, but also induces specific immunomodulatory effects in T. gondii-infected immune cells. Therefore, this study indicates that ursolic acid can be effectively utilized as a potential candidate agent for developing novel anti-toxoplasmosis drugs, and has immunomodulatory activity.
This study was carried out to evaluate the anti-parasitic effect of ursolic acid against Toxoplasma gondii (T. gondii) that induces toxoplasmosis, particularly in humans. The anti-parasitic effects of ursolic acid against T. gondii-infected cells and T. gondii were evaluated through different specific assays, including immunofluorescence staining and animal testing. Ursolic acid effectively inhibited the proliferation of T. gondii when compared with sulfadiazine, and consistently induced anti-T. gondii activity/effect. In particular, the formation of parasitophorous vacuole membrane (PVM) in host cells was markedly decreased after treating ursolic acid, which was effectively suppressed. Moreover, the survival rate of T. gondii was strongly inhibited in T. gondii group treated with ursolic acid, and then 50% inhibitory concentration (IC50) against T. gondii was measured as 94.62 μg/mL. The T. gondii-infected mice treated with ursolic acid indicated the same survival rates and activity as the normal group. These results demonstrate that ursolic acid causes anti-T. gondii action and effect by strongly blocking the proliferation of T. gondii through the direct and the selective T. gondii-inhibitory ability as well as increases the survival of T. gondii-infected mice. This study shows that ursolic acid has the potential to be used as a promising anti-T. gondii candidate substance for developing effective anti-parasitic drugs.
Background and objective: Dermatitis is a chronic disease accompanied by such symptoms as itching and dry skin. The environment and diet can aggravate dermatitis, so attention to skin care is essential. Colocasia esculenta is used in various manners and for different purposes, including with regard to inflammation, aging, and the digestive system. The anti-inflammatory effect of Colocasia esculenta water extract was confirmed using RAW 264.7 macrophages with regard to male ICR mice. Methods: In the case of the ICR mice, 5% 12-O-Tetradecanoylphorbol-13-acetate (TPA) was used to cause inflammation for 7 days, and 100 μL of Colocasia esculenta water extract and panthenol were administered orally for 10 days. In addition, RT-PCR, NO, ELISA was conducted. Results: As a result of reverse transcription polymerase chain reaction (RT-PCR) using RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS), it was found that Colocasia esculenta water extract reduced the expression of inflammatory cytokines. As a result of hematoxylin and eosin (H&E) staining using mouse ear tissue, Colocasia esculenta water extract reduced ear thickness and showed an effect of suppressing ear edema. In addition, compared to the TPA-treated group, the Colocasia esculenta extract-treated group had reduced nitric oxide (NO) production by 18.23 μM and IL-13 production decreased by 136.55 pg/ml. Conclusion: Colocasia esculenta water extract has been shown to be effective in lowering inflammatory cytokine production. These results suggest that Colocasia esculenta water extracts can be used as natural products to treat dermatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.