Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.
BackgroundThe natural ratios of carbon (C), nitrogen (N), and sulfur (S) stable isotopes can be varied in some specific living organisms owing to various isotopic fractionation processes in nature. Therefore, the analysis of C, N, and S stable isotope ratios in ginseng can provide a feasible method for determining ginseng authenticity depending on the cultivation land and type of fertilizer.MethodsC, N, and S stable isotope composition in 6-yr-old ginseng roots (Jagyeongjong variety) was measured by isotope ratio mass spectrometry.ResultsThe type of cultivation land and organic fertilizers affected the C, N, and S stable isotope ratio in ginseng (p < 0.05). The δ15NAIR and δ34SVCDT values in ginseng roots more significantly discriminated the cultivation land and type of organic fertilizers in ginseng cultivation than the δ13CVPDB value. The combination of δ13CVPDB, δ15NAIR, or δ34SVCDT in ginseng, except the combination δ13CVPDB–34SVCDT, showed a better discrimination depending on soil type or fertilizer type.ConclusionThis case study provides preliminary results about the variation of C, N, and S isotope composition in ginseng according to the cultivation soil type and organic fertilizer type. Hence, our findings are potentially applicable to evaluate ginseng authenticity depending on cultivation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.