Recently, the three-dimensional concrete printing (3DCP) method has been garnering considerable interest owing to its ability to significantly reduce the construction time. In this study, 3D printing or additive manufacturing was applied to mortar using a small gantry type equipment and the performance of the method was evaluated. The mixture proportioning for good mortar printing and deposition was derived. The parameters of printability, buildability, compressive strength, flexural tensile strength, and anti-washout were considered for the performance evaluation. The results showed good printability with a constant width and no surface defects. In the buildability test, the rate of yield stress development increased, and the rate of change in the layer height decreased as the interlayer time interval increased during underwater printing. The flexural tensile strength of the specimen cast into the mold was lower than that of the specimen extracted from the additive parts owing to the longitudinal confinement during printing. The compressive strength in the lateral direction was slightly higher than that in the perpendicular direction, whereas the compressive strength of the specimen extracted from the part printed underwater was higher than that of the specimen cast into the mold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.