Organic−inorganic hybrid perovskites hold great potential for various optoelectronic devices with exceptional properties. Although the direct generation of circularly polarized emission from perovskites would enable various compact devices, achieving a large degree of circular polarization (DCP) at room temperature still remains challenging. Herein, we demonstrate that DCP can be strongly enhanced at the narrow mode position of chiral Fano resonances. In our design, a perovskite film is spin-coated on a symmetry-broken structure with a relatively large feature size. A large DCP of more than 0.5 is achieved at room temperature without the direct patterning of the perovskite layer. Reciprocity calculation reveals that chiral field enhancement enables the emission of opposite helicity to couple into counterpropagating slab modes and leads to a large DCP. Our design is very general and scalable. Our work may lead to circularly polarized light sources based on various perovskite materials.
Bound states in the continuum (BICs) or trapped modes can provide an important new avenue for strong light confinement via destructive interference. Dielectric photonic structures have been extensively studied for optical BICs. However, BICs in plasmonic nanostructures have not been explored much yet. Herein, we present a thorough experimental study of plasmonic BICs via Fourier-plane spectroscopy and imaging. Optical mode dispersion in a metal grating covered by a dielectric layer is directly measured in an angle-resolved white light reflection spectrum. Two dielectric layer thicknesses are considered. Both plasmonic and photonics modes are supported in the visible range using a thicker dielectric film; hence, either hybrid or purely plasmonic BICs can be formed. With a thinner dielectric layer, only plasmonic modes are strongly excited and purely plasmonic BICs appear. Our measurements exhibit all features expected for BICs, including a substantial increase in the Q factor. We also demonstrate that the BIC position can be switched from one optical mode branch to the other by tuning a metal grating parameter. Moreover, by mixing luminescent dyes in a dielectric layer, light emission coupling into BICs is investigated. We find that the photoluminescence peak disappears at the BIC condition, which is attributed to the trapping of molecular emission at plasmonic BICs. Therefore, both white light reflection and dye emission measurements in the Fourier plane clearly indicate the formation of trapped modes in plasmonic nanostructures. Our observation implies that plasmonic BICs can enable a highly effective light trapping device despite the simple structure of the device geometry. Plasmonic supercavity design based on the BIC concept may provide many interesting future opportunities for nanolasers, optical sensing, and nonlinear enhancement.
Strong light absorption in ultrathin films has been of great interest for both fundamental studies and device applications. Here we demonstrate and analyze controllable superabsorption in excitonic thin films in the visible region. By adjusting the concentration of J-aggregate dyes, we control the dispersion of excitonic films (from optically metallic to nonmetallic ones) and show that this leads to drastic changes in the optical response of organic thin films. We find that planar excitonic films can have various optical features in the visible region, for example, surface polaritons, epsilon-near-pole, asymmetric Fabry−Perot type resonances, and so on. We leverage these diverse features to study perfect absorption in planar films without additional structural patterning. We also demonstrate that strong light absorption can even occur away from an excitonic absorption peak (i.e., maximum optical loss position) due to cavity-like resonances in the high dielectric constant region. Our work demonstrates that there are unique opportunities for dispersion control in the visible region with easy-to-handle organic molecules, and this can be useful for novel nano-optical studies or energy conversion devices. Collaborative synergy between molecular photonics and nanoscale optics has been demonstrated throughout this work.
Momentum space topology can be exploited to manipulate radiation in real space. Here we demonstrate topological control of 2D perovskite emission in the strong coupling regime via polaritonic bound states in the continuum (BICs). Topological polarization singularities (polarization vortices and circularly polarized eigenstates) are observed at room temperature by measuring the Stokes parameters of photoluminescence in momentum space. Particularly, in symmetry-broken structures, a very large degree of circular polarization (DCP) of ∼0.835 is achieved in the perovskite emission, which is the largest in perovskite materials to our knowledge. In the strong coupling regime, lower polariton modes shift to the low-loss spectral region, resulting in strong emission enhancement and large DCP. Our reciprocity analysis reveals that DCP is limited by material absorption at the emission wavelength. Polaritonic BICs based on 2D perovskite materials combine unique topological features with exceptional material properties and may become a promising platform for active nanophotonic devices.
Three-dimensional (3D) printing is ideal for the fabrication of various customized 3D components with fine details and material-design complexities. However, most components fabricated so far have been static structures with fixed shapes and functions. Here we introduce bistability to 3D printing to realize highly-controlled, reconfigurable structures. Particularly, we demonstrate 3D printing of twisting and rotational bistable structures. To this end, we have introduced special joints to construct twisting and rotational structures without post-assembly. Bistability produces a well-defined energy diagram, which is important for precise motion control and reconfigurable structures. Therefore, these bistable structures can be useful for simplified motion control in actuators or for mechanical switches. Moreover, we demonstrate tunable bistable components exploiting shape memory polymers. We can readjust the bistability-energy diagram (barrier height, slope, displacement, symmetry) after printing and achieve tunable bistability. This tunability can significantly increase the use of bistable structures in various 3D-printed components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.