PTEN is frequently mutated in prostate cancer. The tumor suppressor function of PTEN is attributed to its lipid phosphatase activity that counters PI3K action. Here, we report a PTEN-ARID4B-PI3K axis in which PTEN inhibits expression of ARID4B, while ARID4B is a transcriptional activator of the PI3K subunit genes PIK3CA and PIK3R2 that are crucial for activation of the PI3K/AKT pathway. Reciprocal binding of ARID4B and histone H1 to the PIK3CA and PIK3R2 promoters modulates chromatin condensation, suggesting a mechanism by which ARID4B activates these promoters. Functional analyses reveals that ARID4B is required for prostate tumorigenesis when PTEN is deficient. The biological significance is further substantiated by the existence of a PTEN/ARID4B/PIK3CA three-gene signature that improves the predictive power for prostate cancer recurrence in patients. In summary, we identify ARID4B as a master regulator in the PTEN-PI3K pathway, thus providing a potential therapeutic target for prostate cancer carrying PTEN mutations.
HepG2 cell death with magnetic hyperthermia (MHT) using hydroxyapatite nanoparticles (mHAPs) and alternating magnetic fields (AMF) was investigated in vitro. The mHAPs were synthesized as thermo-seeds by co-precipitation with the addition of Fe. The grain size of the HAPs and iron oxide magnetic were 39.1 and 19.5 nm and were calculated by the Scherrer formula. The HepG2 cells were cultured with mHAPs and exposed to an AMF for 30 min yielding maximum temperatures of 43 ± 0.5 °C. After heating, the cell viability was reduced by 50% relative to controls, lactate dehydrogenase (LDH) concentrations measured in media were three-fold greater than those measured in all control groups. Readouts of toxicity by live/dead staining were consistent with cell viability and LDH assay results. Measured reactive oxygen species (ROS) in cells exposed to MHT were two-fold greater than in control groups. Results of cDNA microarray and Western blotting revealed tantalizing evidence of ATM and GADD45 downregulation with possible MKK3/MKK6 and ATF-2 of p38 MAPK inhibition upon exposure to mHAPs and AMF combinations. These results suggest that the combination of mHAPs and AMF can increase intracellular concentrations of ROS to cause DNA damage, which leads to cell death that complement heat stress related biological effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.