Periodontal disease, a chronic disease caused by bacterial infection, eventually progresses to severe inflammation and bone loss. Regulating excessive inflammation of inflamed periodontal tissues is critical in treating periodontal diseases. The periodontal ligament (PDL) is primarily a connective tissue attachment between the root and alveolar bone. PDL fibroblasts (PDLFs) produce pro-inflammatory cytokines in response to bacterial infection, which could further adversely affect the tissue and cause bone loss. In this study, we determined the ability of Litsea japonica leaf extract (LJLE) to inhibit pro-inflammatory cytokine production in PDLFs in response to various stimulants. First, we found that LJLE treatment reduced lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (interleukin-6 and interleukin-8) mRNA and protein expression in PDLFs without cytotoxicity. Next, we observed the anti-inflammatory effect of LJLE in PDLFs after infection with various oral bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. These anti-inflammatory effects of LJLE were dose-dependent, and the extract was effective following both pretreatment and posttreatment. Moreover, we found that LJLE suppressed the effect of interleukin-1 beta-induced pro-inflammatory cytokine production in PDLFs. Taken together, these results indicate that LJLE has anti-inflammatory activity that could be exploited to prevent and treat human periodontitis by controlling inflammation.
Objectives: The purpose of this study was to investigate the effects of dry syrups on bovine tooth surfaces. Methods: Each specimen of the extracted bovine teeth enamel was treated with two types of dry syrup (experimental group), mineral water (negative control group), and liquid syrup (positive control group) (n=12 per group). The specimens were immersed for 1, 5, and 10 minutes and subsequently analyzed for surface microhardness changes using a Vickers hardness tester. Results: The surface microhardness of sound enamel decreased as the immersion time increased. In addition, the microhardness difference (ΔVHN) among the groups after immersion for 10 minutes in both liquid syrup and two types of dry syrup was higher than that after immersion in mineral water (P<0.05). There were significant differences between the liquid syrup group and the two dry syrup groups (P<0.05). However, there was no significant difference between the two groups of dry syrup (P>0.05). Conclusions: These results imply the erosive potential of dry syrup on tooth surfaces. The longer the contact time with teeth, greater is the risk of dental erosion. Therefore, it is recommended that the mouth be rinsed with water after drinking the syrup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.