Cytoplasmic dynein is the major minus-end-directed microtubule-based motor in cells. Dynein processivity and cargo selectivity depend on cargo-specific effectors that, while generally unrelated, share the ability to interact with dynein and dynactin to form processive dynein–dynactin-effector complexes. How this is achieved is poorly understood. Here, we identify a conserved region of the dynein Light Intermediate Chain 1 (LIC1) that mediates interactions with unrelated dynein–dynactin effectors. Quantitative binding studies map these interactions to a conserved helix within LIC1 and to N-terminal fragments of Hook1, Hook3, BICD2, and Spindly. A structure of the LIC1 helix bound to the N-terminal Hook domain reveals a conformational change that creates a hydrophobic cleft for binding of the LIC1 helix. The LIC1 helix competitively inhibits processive dynein–dynactin-effector motility in vitro, whereas structure-inspired mutations in this helix impair lysosomal positioning in cells. The results reveal a conserved mechanism of effector interaction with dynein–dynactin necessary for processive motility.
Cytoplasmic dynein-1 (dynein) is the motor responsible for most retrograde transport of cargoes along microtubules in eukaryotic cells, including organelles, mRNA and viruses. Cargo selectivity and activation of processive motility depend on a group of so-called “activating adaptors” that link dynein to its general cofactor, dynactin, and cargoes. The mechanism by which these adaptors regulate dynein transport is poorly understood. Here, based on crystal structures, quantitative binding studies, and in vitro motility assays, we show that BICD2, CRACR2a, and HOOK3, representing three subfamilies of unrelated adaptors, interact with the same amphipathic helix of the dynein light intermediate chain-1 (LIC1). While the hydrophobic character of the interaction is conserved, the three adaptor subfamilies use different folds (coiled-coil, EF-hand, HOOK domain) and different surface contacts to bind the LIC1 helix with affinities ranging from 1.5 to 15.0 μM. We propose that a tunable LIC1-adaptor interaction modulates dynein’s motility in a cargo-specific manner.
The Rickettsia 1800-amino-acid autotransporter protein surface cell antigen 2 (Sca2) promotes actin polymerization on the surface of the bacterium to drive its movement using an actin comet-tail mechanism. Sca2 mimics eukaryotic formins in that it promotes both actin filament nucleation and elongation and competes with capping protein to generate filaments that are long and unbranched. However, despite these functional similarities, Sca2 is structurally unrelated to eukaryotic formins and achieves these functions through an entirely different mechanism. Thus, while formins are dimeric, Sca2 functions as a monomer. However, Sca2 displays intramolecular interactions and functional cooperativity between its N-and C-terminal domains that are crucial for actin nucleation and elongation. Here, we map the interaction of N-and C-terminal fragments of Sca2 and their contribution to actin binding and nucleation. We find that both the N-and C-terminal regions of Sca2 interact with actin monomers but only weakly, whereas the full-length protein binds two actin monomers with high affinity. Moreover, deletions at both ends of the N-and C-terminal regions disrupt their ability to interact with each other, suggesting that they form a contiguous ring-like structure that wraps around two actin subunits, analogous to the formin homology-2 domain. The discovery of Sca2 as an actin nucleator followed the identification of what appeared to be a repeat of three Wiskott-Aldrich syndrome homology 2 (WH2) domains in the middle of the molecule, consistent with the presence of WH2 domains in most actin nucleators. However, we show here that contrary to previous assumptions, Sca2 does not contain WH2 domains. Instead, our analysis indicates that the region containing the putative WH2 domains is folded as a globular domain that cooperates with other parts of the Sca2 molecule for actin binding and nucleation.
Bacteria, like humans, face diverse kinds of stress during life. Oxidative stress, which is produced by cellular metabolism and environmental factors, can significantly damage cellular macromolecules, ultimately negatively affecting the normal growth of the cell. Therefore, bacteria have evolved a number of protective strategies to defend themselves and respond to imposed stress by changing the expression pattern of genes whose products are required to convert harmful oxidants into harmless products. Structural biology combined with biochemical studies has revealed the mechanisms by which various bacterial redox sensor proteins recognize the cellular redox state and transform chemical information into structural signals to regulate downstream signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.