Actin plays a fundamental role in the regulation of spine morphology (both shrinkage and enlargement) upon synaptic activation. In particular, actin depolymerization is crucial for the spine shrinkage in NMDAR-mediated synaptic depression. Here, we define the role of SPIN90 phosphorylation/dephosphorylation in regulating actin depolymerization via modulation of cofilin activity. When neurons were treated with NMDA, SPIN90 was dephosphorylated by STEP61 (striatal-enriched protein tyrosine phosphatase) and translocated from the spines to the dendritic shafts. In addition, phosphorylated SPIN90 bound cofilin and then inhibited cofilin activity, suggesting that SPIN90 dephosphorylation is a prerequisite step for releasing cofilin so that cofilin can adequately sever actin filaments into monomeric form. We found that SPIN90 YE, a phosphomimetic mutant, remained in the spines after NMDAR activation where it bound cofilin, thereby effectively preventing actin depolymerization. This led to inhibition of the activity-dependent redistribution of cortactin and drebrin A, as well as of the morphological changes in the spines that underlie synaptic plasticity. These findings indicate that NMDA-induced SPIN90 dephosphorylation and translocation initiates cofilin-mediated actin dynamics and spine shrinkage within dendritic spines, thereby modulating synaptic activity.Electronic supplementary materialThe online version of this article (doi:10.1007/s00018-013-1391-4) contains supplementary material, which is available to authorized users.
Neurotransmitter release depends on voltage-gated Na channels (Nas) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na channels. Using optical recordings of Ca and membrane voltage, we demonstrate here that Na channel β2 subunits (Naβ2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Naβ2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Naβ2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. Voltage-gated Ca channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na channel β2 subunits modulate AP-evoked Ca-influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain.
Analysis of the presynaptic action potential’s (APsyn) role in synaptic facilitation in hippocampal pyramidal neurons has been difficult due to size limitations of axons. We overcame these size barriers by combining high-resolution optical recordings of membrane potential, exocytosis, and Ca2+in cultured hippocampal neurons. These recordings revealed a critical and selective role for Kv1 channel inactivation in synaptic facilitation of excitatory hippocampal neurons. Presynaptic Kv1 channel inactivation was mediated by the Kvβ1 subunit and had a surprisingly rapid onset that was readily apparent even in brief physiological stimulation paradigms including paired-pulse stimulation. Genetic depletion of Kvβ1 blocked all broadening of the APsynduring high-frequency stimulation and eliminated synaptic facilitation without altering the initial probability of vesicle release. Thus, using all quantitative optical measurements of presynaptic physiology, we reveal a critical role for presynaptic Kvchannels in synaptic facilitation at presynaptic terminals of the hippocampus upstream of the exocytic machinery.
The correct rearrangement of postsynaptic components in dendritic spines is important for driving changes of spine structure and synaptic function. SPIN90 plays an essential role in many cellular processes including actin polymerization, endocytosis, growth cone formation and dendritic spine morphogenesis. Here, we demonstrate that SPIN90, which is a binding partner of PSD95 and Shank in spines, is targeted to synapses and leads to enhanced synaptic activity in neurons. We show, using in vitro and in vivo kinase assays, that SPIN90 is tyrosine phosphorylated by Src kinase. SPIN90 that was tyrosine-phosphorylated by Src was targeted to dendritic spines in cultured hippocampal neurons. Moreover, a SPIN90 phospho-deficient mutant was unable to accumulate at dendritic spines whereas SPIN90 WT and a phospho-mimicking mutant were localized at spines and bound PSD95 and Shank with increased efficiency. Consistent with these findings, hippocampal neurons that overexpressed SPIN90 WT or a phospho-mimicking mutant had enlarged spine heads, leading to enhanced postsynaptic function in terms of both amplitude and frequency. Together, our findings show that SPIN90 modulates synaptic activity in neurons as a result of its phosphorylation.
Dendritic spines are highly specialized actin‐rich structures on which the majority of excitatory synapses are formed in the mammalian CNS. SPIN90 is an actin‐binding protein known to be highly enriched in postsynaptic densities (PSDs), though little is known about its function there. Here, we show that SPIN90 is a novel binding partner for Shank proteins in the PSD. SPIN90 and Shank co‐immunoprecipitate from brain lysates and co‐localize in postsynaptic dendrites and act synergistically to mediate spine maturation and spine head enlargement. At the same time, SPIN90 causes accumulation of Shank and PSD‐95 within dendritic spines. In addition, we found that the protein composition of PSDs in SPIN90 knockout mice is altered as is the actin cytoskeleton of cultured hippocampal SPIN90 knockout neurons. Taken together, these findings demonstrate that SPIN90 is a Shank1b binding partner and a key contributor to the regulation of dendritic spine morphogenesis and brain function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.