In this study, a new class of polyurethane (PU) nanofibers containing silver (Ag) nanoparticles (NPs) was synthesized by electrospinning. A simple method that did not depending on additional foreign chemicals was used to self synthesize the silver NPs in/on PU nanofibers. The synthesis of silver NPs was carried out by exploiting the reduction ability of N,N-dimethylformamide (DMF), which is used mainly to decompose silver nitrate to silver NPs. Typically, a sol-gel consisting of AgNO 3 /PU was electrospun and aged for one week. Silver NPs were created in/on PU nanofibers. SEM confirmed the well oriented nanofibers and good dispersion of pure silver NPs. TEM indicated that the Ag NPs were 5 to 20 nm in diameter. XRD demonstrated the good crystalline features of silver metal. The mechanical properties of the nanofiber mats showed improvement with increasing silver NPs content. The fixedness of the silver NPs obtained on PU nanofibers was examined by harsh successive washing of the as-prepared mats using a large amount of water. The results confirmed the good stability of the synthesized nanofiber mats. Two model organisms, E. coli and S. typhimurium, were used to check the antimicrobial influence of these nanofiber mats. Subsequently, antimicrobial tests indicated that the prepared nanofibers have a high bactericidal effect. Accordingly, these results highlight the potential use of these nanofiber mats as antimicrobial agents.
We report a case of methimazole-induced acute hepatic failure, which occurred 17 weeks after initiation of the drug in a 43-year-old man with hyperthyroidism and hepatitis B surface antigenemia. Postmortem needle autopsy of the liver revealed an established micronodular cirrhosis secondary to hepatitis B with moderate septal/portal inflammation, marked cholestasis and scattered acidophilic bodies. The serum hepatitis B surface antigen (HBsAg) was positive, but reactivation of hepatitis B was unlikely in view of the absence of a serum hepatitis B e antigen (HBeAg) and hepatitis B virus deoxyribonucleic acid (HBV-DNA) and negative stain for HBsAg and hepatitis B core antigen (HBcAg) in the liver tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.