For a Hilbert space operator T∈B(H), let LT and RT∈B(B(H)) denote, respectively, the operators of left multiplication and right multiplication by T. For positive integers m and n, let ▵T∗,Tm(I)=(LT∗RT−I)m(I) and δT∗,Tn(I)=(LT∗−RT)m(I). The operator T is said to be (m,n)-isosymmetric if ▵T∗,TmδT∗,Tn(I)=0. Power bounded (m,n)-isosymmetric operators T∈B(H) have an upper triangular matrix representation T=T1T30T2∈B(H1⊕H2) such that T1∈B(H1) is a C0.-operator which satisfies δT1∗,T1n(I|H1)=0 and T2∈B(H2) is a C1.-operator which satisfies AT2=(Vu⊕Vb)|H2A, A=limt→∞T2∗tT2t, Vu is a unitary and Vb is a bilateral shift. If, in particular, T is cohyponormal, then T is the direct sum of a unitary with a C00-contraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.