S-Adenosyl-L-methionine synthetase (SAM-s) catalyzes the biosynthesis of SAM from ATP and L-methionine. Despite extensive research with many organisms, its role in Streptomyces sp. remains unclear. In the present study, the putative SAM-s gene was isolated from a spectinomycin producer, Streptomyces spectabilis. The purified protein from the transformed Escherichia coli with the isolated gene synthesized SAM from L-methionine and ATP in vitro, strongly indicating that the isolated gene indeed encoded the SAM-s protein.The overexpression of the SAM-s gene in Streptomyces lividans TK23 inhibited sporulation and aerial mycelium formation but enhanced the production of actinorhodin in both agar plates and liquid media. Surprisingly, the overexpressed SAM was proven by Northern analysis to increase the production of actinorhodin through the induction of actII-ORF4, a transcription activator of actinorhodin biosynthetic gene clusters. In addition, we found that a certain level of intracellular SAM is critical for the induction of antibiotic biosynthetic genes, since the control strain harboring only the plasmid DNA did not show any induction of actII-ORF4 until it reached a certain level of SAM in the cell. From these results, we concluded that the SAM plays important roles as an intracellular factor in both cellular differentiation and antibiotic production in Streptomyces sp.
200 - nm -thick BMN films were deposited on Pt∕TiO2∕SiO2∕Si and Cu∕Ti∕SiO2∕Si substrates at various temperatures by pulsed laser deposition. The dielectric constant and capacitance density of the films deposited on Pt and Cu electrodes show similar tendency with increasing deposition temperature. On the other hand, dielectric loss of the films deposited on Cu electrode varies from 0.7% to 1.3%, while dielectric loss of films on Pt constantly shows 0.2% even though the deposition temperature increases. The low value of breakdown strength in BMN films on Pt compared to films deposited on Cu electrode was attributed to the increase of surface roughness by the formation of secondary phases at interface between BMN films and Pt electrodes.
Equine parvovirus-hepatitis (EqPV-H) causes equine hepatitis. The prevalence of EqPV-H in healthy horses has been reported in the United States, China, Germany, and Austria. The present study determined the prevalence of EqPV-H in the sera of clinically healthy horses in South Korea to identify the potential factors for infection and examine the genetic diversity of EqPV-H DNA sequences through comparison with foreign strains. Serum samples collected from 321 horses were tested for EqPV-H using non-structural protein 1 (NS1)-specific polymerase chain reaction. The associations of EqPV-H infection with sex, age, aspartate aminotransferase and γ-glutamyl transferase levels, and race performance were analyzed. Fourteen samples tested positive for EqPV-H (4.4%, 14/321), and EqPV-H infection was associated with sex (p = 0.006) and performance (p = 0.049). In both EqPV-H-positive and control horses, liver-specific biochemical analytes were within the normal ranges. Phylogenetic analyses based on the partial sequences of EqPV-H NS1 revealed that the Korean EqPV-H isolates shared approximately 98.7–100% similarity. Of these, 11 Korean isolates shared high similarity with strains from the United States, Germany, and China, and the remaining three strains were distinct in phylogenetic analyses. The present study describes the current molecular prevalence, potential risk factors, and genetic diversity of Korean EqPV-H.
The development of a pilot plant process for doenjang fermentation using safety-verified autochthonous mixed starter will facilitate the manufacture of flavor-rich doenjang similar to traditional doenjang safely and reproducibly in industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.