Abstract:As power systems develop rapidly into smarter and more flexible configurations, so too must the communication technologies that support them. Machine-to-machine (M2M) communication in power systems enables information collection by combining sensors and communication protocols. In doing so, M2M technology supports communication between machines to improve power quality and protection coordination. When functioning in a "smart grid" environment, M2M has been labelled by the European Telecommunications Standard Institute (ETSI). International Electronical Committee (IEC) 61850 as the most important standard in power network systems. As evidence, this communication platform has been used for device data collection/control in substation automation systems and distribution automation systems. If the IEC 61850 information model were to be combined with a set of contemporary web protocols, the potential benefits would be enormous. Therefore, a constrained application protocol (CoAP) has been adopted to create an ETSI M2M communication architecture. CoAP is compared with other protocols (MQTT, SOAP) to demonstrate the validity of using it. This M2M communication technology is applied in an IEC61850, and use the OPNET Modeler 17.1 to demonstrate intercompatibility of CoAP Gateway. The proposed IEC 61850 and CoAP mapping scheme reduces the mapping time and improves throughput. CoAP is useful in the ETSI M2M environment where device capability is able to be limited.
Abstract:The open-platform communication (OPC) unified architecture (UA) (IEC62541) is introduced as a key technology for realizing a variety of smart grid (SG) use cases enabling relevant automation and control tasks. The OPC UA can expand interoperability between power systems. The top-level SG management platform needs independent middleware to transparently manage the power information technology (IT) systems, including the IEC 61850. To expand interoperability between the power system for a large number of stakeholders and various standards, this paper focuses on the IEC 61850 for the digital substation. In this paper, we propose the interconnection method to integrate communication with OPC UA and convert OPC UA AddressSpace using system configuration description language (SCL) of IEC 61850. We implemented the mapping process for the verification of the interconnection method. The interconnection method in this paper can expand interoperability between power systems for OPC UA integration for various data structures in the smart grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.