An ideal cancer therapeutic strategy involves the selective killing of cancer cells without affecting the surrounding normal cells. However, researchers have failed to develop such methods for achieving selective cancer cell death because of shared features between cancerous and normal cells. In this study, we have developed a therapeutic strategy called the cancer-specific insertions–deletions (InDels) attacker (CINDELA) to selectively induce cancer cell death using the CRISPR-Cas system. CINDELA utilizes a previously unexplored idea of introducing CRISPR-mediated DNA double-strand breaks (DSBs) in a cancer-specific fashion to facilitate specific cell death. In particular, CINDELA targets multiple InDels with CRISPR-Cas9 to produce many DNA DSBs that result in cancer-specific cell death. As a proof of concept, we demonstrate here that CINDELA selectively kills human cancer cell lines, xenograft human tumors in mice, patient-derived glioblastoma, and lung patient-driven xenograft tumors without affecting healthy human cells or altering mouse growth.
Poly(ADP‐ribose) polymerase 1 (PARP1) facilitates DNA damage response (DDR). While the Ewing's sarcoma breakpoint region 1 (EWS) protein fused to FLI1 triggers sarcoma formation, the physiological function of EWS is largely unknown. Here, we investigate the physiological role of EWS in regulating PARP1. We show that EWS is required for PARP1 dissociation from damaged DNA. Abnormal PARP1 accumulation caused by EWS inactivation leads to excessive Poly(ADP‐Ribosy)lation (PARylation) and triggers cell death in both in vitro and in vivo models. Consistent with previous work, the arginine‐glycine‐glycine (RGG) domain of EWS is essential for PAR chain interaction and PARP1 dissociation from damaged DNA. Ews and Parp1 double mutant mice do not show improved survival, but supplementation with nicotinamide mononucleotides extends Ews‐mutant pups’ survival, which might be due to compensatory activation of other PARP proteins. Consistently, PARP1 accumulates on chromatin in Ewing's sarcoma cells expressing an EWS fusion protein that cannot interact with PARP1, and tissues derived from Ewing's sarcoma patients show increased PARylation. Taken together, our data reveal that EWS is important for removing PARP1 from damaged chromatin.
Thyroid hormone receptor-interacting protein 13 (TRIP13) participates in various regulatory steps related to the cell cycle, such as the mitotic spindle assembly checkpoint and meiotic recombination, possibly by interacting with members of the HORMA domain protein family. Recently, it was reported that TRIP13 could regulate the choice of the DNA repair pathway, i.e., homologous recombination (HR) or nonhomologous end-joining (NHEJ). However, TRIP13 is recruited to DNA damage sites within a few seconds after damage and may therefore have another function in DNA repair other than regulation of the pathway choice. Furthermore, the depletion of TRIP13 inhibited both HR and NHEJ, suggesting that TRIP13 plays other roles besides regulation of choice between HR and NHEJ. To explore the unidentified functions of TRIP13 in the DNA damage response, we investigated its genome-wide interaction partners in the context of DNA damage using quantitative proteomics with proximity labeling. We identified MRE11 as a novel interacting partner of TRIP13. TRIP13 controlled the recruitment of MDC1 to DNA damage sites by regulating the interaction between MDC1 and the MRN complex. Consistently, TRIP13 was involved in ATM signaling amplification. Our study provides new insight into the function of TRIP13 in immediate-early DNA damage sensing and ATM signaling activation.
In the absence of the RNA-templated reverse transcriptase, telomerase, the predominant means of terminal addition, arises from break-induced replication (BIR) at multiple homologous subtelomeric Y' loci and among internal homeologous (imperfect) (polyG1-3T) tracts. These last tracts are interspersed between subtelomeric Y' direct repeats. One major survivor class contains very short (~50 bp) terminal telomere repeats. This size is sufficient for slow growth and partial telomere functionality and cell viability. However, in cells carrying the mre11A470T allele, adjacent to the predicted Rad50/Mre11 junction, cells thrive at wild-type rates, with small, but reproducible, increases in telomere length. We have proposed that the increase in telomere size and growth rate are causally linked. To understand the BIR process at the telomere, we initiated studies of large-tract (RAD51-sensitive) homologous BIR in MRE11 and mre11A470T cells in a model color assay coupled with CHEF gel analysis and marker retention. Wild-type and mutant homologous BIR rates are maintained at the same level as the rates between wild-type and mutant homeologous BIR. However, the fidelity of BIR products was severely altered in mre11A470T cells. We find that 95% of homologous BIR in MRE11 cells gives rise to the expected product size, while 25% of BIR products in mre11A470T cells were of unpredicted size (error-prone), most of which initiated at an aberrant site. However, ~25% of homeologous MRE11 cells and 1/7 of homeologous mre11A470T cells underwent error-prone BIR. This class is initiated erroneously, followed by secondary events that elongate or truncate the telomere. We conclude that error-prone BIRs are increased in homeologous recombination in wild-type and in mre11A470T cells. This finding may explain the bypass of senescence in telomerase-negative cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.