The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune-modulatory receptor involved in phagocytosis and inflammation. Mutations of Q33X, Y38C and T66M cause Nasu-Hakola disease (NHD) which is characterized by early onset of dementia and bone cysts. A recent, genome-wide association study also revealed that single nucleotide polymorphism of TREM2, such as R47H, increased the risk of Alzheimer's disease (AD) similar to ApoE4. However, how these mutations affect the trafficking of TREM2, which may affect the normal functions of TREM2, was not known. In this study, we show that TREM2 with NHD mutations are impaired in the glycosylation with complex oligosaccharides in the Golgi apparatus, in the trafficking to plasma membrane and further processing by γ-secretase. Although R47H mutation in AD affected the glycosylation and normal trafficking of TREM2 less, the detailed pattern of glycosylated TREM2 differs from that of the wild type, thus suggesting that precise regulation of TREM2 glycosylation is impaired when arginine at 47 is mutated to histidine. Our results suggest that the impaired glycosylation and trafficking of TREM2 from endoplasmic reticulum/Golgi to plasma membrane by mutations may inhibit its normal functions in the plasma membrane, which may contribute to the disease.
Mammalian brain glycome remains a relatively poorly understood area compared to other large-scale “omics” studies, such as genomics and transcriptomics due to the inherent complexity and heterogeneity of glycan structure and properties. Here, we first performed spatial and temporal analysis of glycome expression patterns in the mammalian brain using a cutting-edge experimental tool based on liquid chromatography-mass spectrometry, with the ultimate aim to yield valuable implications on molecular events regarding brain functions and development. We observed an apparent diversity in the glycome expression patterns, which is spatially well-preserved among nine different brain regions in mouse. Next, we explored whether the glycome expression pattern changes temporally during postnatal brain development by examining the prefrontal cortex (PFC) at different time point across six postnatal stages in mouse. We found that glycan expression profiles were dynamically regulated during postnatal developments. A similar result was obtained in PFC samples from humans ranging in age from 39 d to 49 y. Novel glycans unique to the brain were also identified. Interestingly, changes primarily attributed to sialylated and fucosylated glycans were extensively observed during PFC development. Finally, based on the vast heterogeneity of glycans, we constructed a core glyco-synthesis map to delineate the glycosylation pathway responsible for the glycan diversity during the PFC development. Our findings reveal high levels of diversity in a glycosylation program underlying brain region specificity and age dependency, and may lead to new studies exploring the role of glycans in spatiotemporally diverse brain functions.
In Parkinson disease (PD), the dopaminergic (DAergic) neurons in the substantia nigra undergo degeneration. While the exact mechanism for the degeneration is still not completely understood, neuronal apoptosis and inflammation are thought to play roles. We have recently obtained evidence that matrix metalloproteinase (MMP)-3 plays a crucial role in the apoptotic signal in DAergic cells as well as activation of microglia. The present study tested whether doxycycline might modulate MMP-3 and provide neuroprotection of DAergic neurons. Doxycycline effectively suppressed the expression of MMP-3 induced in response to cellular stress in the DAergic CATH.a cells. This was accompanied by protection of CATH.a cells as well as primary cultured mesencephalic DAergic neurons via attenuation of apoptosis. The active form of MMP-3, released under the cell stress condition, was also decreased in the presence of doxycycline. In addition, doxycycline led to downregulation of MMP-3 in microglial BV-2 cells exposed to lipopolysaccharide (LPS). This was accompanied by suppression of production of nitric oxide and TNF-alpha, as well as gene expression of iNOS, TNF-alpha, IL-1beta, and COX-2. In vivo, doxycycline provided neuroprotection of the nigral DAergic neurons following MPTP treatment, as assessed by tyrosine hydroxylase immunocytochemistry and silver staining, and suppressed microglial activation and astrogliosis as assessed by Iba-1 and GFAP immunochemistry, respectively. Taken together, doxycycline showed neuroprotective effect on DAergic system both in vitro and in vivo and this appeared to derive from anti-apoptotic and anti-inflammatory mechanisms involving downregulation of MMP-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.