This study investigates the effects of adding injection–compression to rapid heat cycle molding (RHCM) (rapid heat cycle injection–compression molding (RICM)) on the physical quality and optical anisotropy of a molded light guide plate (LGP). Transcription ratio of microstructure, uniformity of part thickness and birefringence were experimentally evaluated on a 7 inch LGP of nominal thickness of 1.12 mm (including a microstructure array of 30 µm diameter and 14 µm height). The designed mold was equipped with rapid heating and compressing facilities and a microstructured nickel stamper was fabricated by UV LIGA process. In addition, to investigate the efficacy of RICM, experiments involving conventional injection molding (CIM), ICM, and RHCM were conducted in parallel with RICM using the same mold. RHCM and RICM yielded excellent transcription ratios for the microstructure, while CIM and RICM provided high thickness uniformity and low birefringence. Thus, RICM obtains high transcription ratio of microstructure, uniform thickness and low birefringence.
The Yellow Sea is one of the most productive continental shelves in the world. This large marine ecosystem is experiencing an epochal change in water temperature, stratification, nutrients, and subsequently in ecological diversity. Research-oriented monitoring of these changes requires a sustainable, multidisciplinary approach. For this purpose, the Korea Institute of Ocean Science and Technology (KIOST) constructed the Socheongcho Ocean Research Station (S-ORS), a steel-framed tower-type platform, in the central Yellow Sea about 50 km off the western coast of the Korean Peninsula. This station is equipped with about forty sensors for interdisciplinary oceanographic observations. Since its construction in 2014, this station has continuously conducted scientific observations and provided qualified time series: physical oceanographic variables such as temperature, salinity, sea level pressure, wave, and current; biogeochemical variables such as chlorophyll-a, photosynthetically active radiation, and total suspended particles; atmospheric variables including air temperature, wind, greenhouse gasses, and air particles including black carbon. A prime advantage is that this platform has provided stable facilities including a wet lab where scientists can stay and experiment on in situ water samples. Several studies are in process to understand and characterize the evolution of environmental signals, including airsea interaction, marine ecosystems, wave detection, and total suspended particles in the central Yellow Sea. This paper provides an overview of the research facilities, maintenance, observations, scientific achievements, and next steps of the S-ORS with highlighting this station as an open lab for interdisciplinary collaboration on multiscale process studies.
Even though injection molding technology has been developed for many years, it is still needed to study the effect of processing conditions on the final properties of injection-molded parts for producing precision products in optical field. The optical anisotropy, i.e., birefringence, is a significant factor which affects the function of many optical components. In the present study, we have focused on the effects of packing and compression processes on the birefringence structure remaining in the disc by examining the gap-wise distribution of birefringence and extinction angle. As a result, two extra birefringence and extinction peaks near the center in thickness direction showed the effect of packing pressure, which came from the extra flow during packing stage. Furthermore, more uniform birefringence distribution was found in injection/compression case than in conventional injection-molded case. Depending on the process condition, even the reversal flow was found from the distribution of extinction angle in injection/compression case. Finally, graphical representation technique of optical refractive indicatrix was suggested to show the difference of final birefringence structure for different process types.
PurposeImage-based computational models with fluid-structure interaction (FSI) can be used to perform plaque mechanical analysis in intracranial artery stenosis. We described a process in FSI study applied to symptomatic severe intracranial (M1) stenosis before and after stenting.Materials and MethodsReconstructed 3D angiography in STL format was transferred to Magics for smoothing of vessel surface and trimming of branch vessels and to HyperMesh for generating tetra volume mesh from triangular surface-meshed 3D angiogram. Computational analysis of blood flow in the blood vessels was performed using the commercial finite element software ADINA Ver 8.5. The distribution of wall shear stress (WSS), peak velocity and pressure was analyzed before and after intracranial stenting.ResultsThe wall shear stress distributions from Computational fluid dynamics (CFD) simulation with rigid wall assumption as well as FSI simulation before and after stenting could be compared. The difference of WSS between rigid wall and compliant wall model both in pre- and post-stent case is only minor except at the stenosis region. These WSS values were greatly reduced after stenting to 15~20 Pa at systole and 3~5 Pa at end-diastole in CFD simulation, which are similar in FSI simulations.ConclusionOur study revealed that FSI simulation before and after intracranial stenting was feasible despite of limited vessel wall dimension and could reveal change of WSS as well as flow velocity and wall pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.