In recent years, attempts have been made to create a door-opening or elevator button that operates based on gestures when entering and exiting a building. This can consider the convenience of an individual carrying luggage, and in some cases, has the advantage of preventing the spread of disease between people through contact. In this study, we propose a method for operating elevator buttons without contact. Elevators cannot utilize high-performance processors owing to production costs. Therefore, this paper introduces a prototype of a low-performance processor-based system that can be used in elevators, and then introduces a weighted K-nearest neighbors (K-NN) based user gesture learning and number matching method for application in an optimal non-contact button control method that can be used in such an environment. As a result, through the proposed method, a performance gain of 7.5% in comparison to a conventional K-NN method and a performance improvement of 9.7% compared to a radial basis function were achieved in a relatively low-performance processor-based system.
This research is to design an effective buffer structure and its management for flash memory based high performance SSDs (Solid State Disks). Specifically conventional SSDs tend to show asymmetrical performance in read and /write operations, in addition to a limited number of erase operations. To minimize the number of erase operations and write latency, the degree of interleaving levels over multiple flash memory chips should be maximized. Thus, to increase the interleaving effect, an effective buffer structure is proposed for the SSD with a hybrid address mapping scheme and super-block management. The proposed buffer operation is designed to provide performance improvement and enhanced flash memory life cycle. Also its management is based on a new selection scheme to determine random and sequential accesses, depending on execution characteristics, and a method to enhance the size of sequential access unit by aggressive merging. Experiments show that a newly developed mapping table under the MBA is more efficient than the basic simple management in terms of maintenance and performance. The overall performance is increased by around 35% in comparison with the basic simple management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.