BackgroundYukmijihwang-tang, a traditional herbal formula, has been used for treating disorder, diabetic mellitus and neurosis in China (Liu-wei-di-huang-tang in Chinese), Japan (Lokumijio-to in Japanese) and Korea for many years. In this study, we investigated the effects of Yukmijihwang-tang water extract (YJT) on the development of benign prostatic hyperplasia (BPH) using a rat model of testosterone propionate (TP)-induced BPH.MethodsA total of 30 rats were divided into five groups. One group was used as a control and the other groups received subcutaneous injections of TP for 4 weeks to induce BPH. YJT (200 or 400 mg/kg) was administered daily for 4 weeks to two groups by oral gavage concurrently with the TP. The animals were euthanized, the prostate and body weights were recorded, and tissues were subjected to hormone assays and histomorphology. In addition, we investigated proliferating cell nuclear antigen (PCNA) expression in the prostate using immunoblotting.ResultsAnimals with BPH showed significantly increased absolute and relative prostate weights, increased dihydrotestosterone levels in the serum or prostate and increased PCNA expression in the prostate; however, YJT-treated animals showed significant reductions compared with the animals with TP-induced BPH. Histomorphology also showed that YJT inhibited TP-induced prostatic hyperplasia.ConclusionsThese findings indicate that YJT effectively inhibited the development of BPH and might be a useful drug clinically.
This study investigated the possible effects and molecular mechanisms of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rats. Inflammation response was assessed by histopathology and serum cytokines levels. We determined the protein expressions of nuclear transcription factor kappa-B (NF-κB), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α), oxidative stress, urinary nitrite-nitrate, malondialdehyde (MDA), and 8-hydroxy-2’-deoxyguanosine (8-OHdG). Finally, we studied the involvement of mitogen-activated protein kinases (MAPKs) signaling in the protective effects of DADS against CP-induced HC. CP treatment caused a HC which was evidenced by an increase in histopathological changes, proinflammatory cytokines levels, urinary nitrite-nitrate level, and the protein expression of NF-κB, COX-2, iNOS, TNF-α, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal regulated kinase (ERK). The significant decreases in glutathione content and glutathione-S-transferase and glutathione reductase activities, and the significant increase in MDA content and urinary MDA and 8-OHdG levels indicated that CP-induced bladder injury was mediated through oxidative DNA damage. In contrast, DADS pretreatment attenuated CP-induced HC, including histopathological lesion, serum cytokines levels, oxidative damage, and urinary oxidative DNA damage. DADS also caused significantly decreased the protein expressions of NF-κB, COX-2, iNOS, TNF-α, p-JNK, and p-ERK. These results indicate that DADS prevents CP-induced HC and that the protective effects of DADS may be due to its ability to regulate proinflammatory cytokines production by inhibition of NF-κB and MAPKs expressions, and its potent anti-oxidative capability through reduction of oxidative DNA damage in the bladder.
Background Crataegus pinnatifida (Chinese hawthorn) has long been used as a herbal medicine in Asia and Europe. It has been used for the treatment of various cardiovascular diseases such as myocardial weakness, tachycardia, hypertension and arteriosclerosis. In this study, we investigated the anti-inflammatory effects of Crataegus pinnatifida ethanolic extracts (CPEE) on Th2-type cytokines, eosinophil infiltration, expression of matrix metalloproteinase (MMP)-9, and other factors, using an ovalbumin (OVA)-induced murine asthma model.Methods/Principal FindingAirways of OVA-sensitized mice exposed to OVA challenge developed eosinophilia, mucus hypersecretion and increased cytokine levels. CPEE was applied 1 h prior to OVA challenge. Mice were administered CPEE orally at doses of 100 and 200 mg/kg once daily on days 18–23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4 and IL-5 in BALF were measured using enzyme-linked immunosorbent (ELISA) assays. Lung tissue sections 4 µm in thickness were stained with Mayer’s hematoxylin and eosin for assessment of cell infiltration and mucus production with PAS staining, in conjunction with ELISA, and Western blot analyses for the expression of MMP-9, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 protein expression. CPEE significantly decreased the Th2 cytokines including IL-4 and IL-5 levels, reduced the number of inflammatory cells in BALF and airway hyperresponsiveness, suppressed the infiltration of eosinophil-rich inflammatory cells and mucus hypersecretion and reduced the expression of ICAM-1, VCAM-1 and MMP-9 and the activity of MMP-9 in lung tissue of OVA-challenged mice.ConclusionsThese results showed that CPEE can protect against allergic airway inflammation and can act as an MMP-9 modulator to induce a reduction in ICAM-1 and VCAM-1 expression. In conclusion, we strongly suggest the feasibility of CPEE as a therapeutic drug for allergic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.