Induction motors are among the most important components of modern machinery and industrial equipment. Therefore, it is necessary to develop a fault diagnosis system that detects the operating conditions of and faults in induction motors early. This paper presents an induction motor fault diagnosis system based on a CNN (convolutional neural network) model. In the proposed method, vibration signal data are obtained from the induction motor experimental environment, and these values are input into the CNN. Then, the CNN performs fault diagnosis. In this study, fault diagnosis of an induction motor is performed in three states, namely, normal, rotor fault, and bearing fault. In addition, a GUI (graphical user interface) for the proposed fault diagnosis system is presented. The experimental results confirm that the proposed method is suitable for diagnosing rotor and bearing faults of induction motors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.