Accumulating studies have linked inflammation to tumor progression. Dietary omega-3 fatty acids, such as docosahexaenoic acid (DHA), have been shown to suppress tumor growth through their conversion to epoxide metabolites. Alternatively, DHA is converted enzymatically into docosahexaenoylethanolamide (DHEA), an endocannabinoid with antiproliferative activity. Recently, we reported a novel class of anti-inflammatory DHEA-epoxide derivative called epoxydocospentaenoic-ethanolamide (EDP-EA) that contain both ethanolamide and epoxide moieties. Herein, we study the antitumorigenic properties of EDP-EAs in an osteosarcoma (OS) model. First, we show ∼80% increase in EDP-EAs in metastatic versus normal lungs of mice. We found significant differences in the apoptotic and antimigratory potencies of the different EDP-EA regioisomers, which were partially mediated through cannabinoid receptor 1 (CB1). Next, we synthesized derivatives of the most pro-apoptotic regioisomer. These derivatives had reduced hydrolytic susceptibility to fatty acid amide hydrolase (FAAH) and increased CB1-selective binding. Collectively, we report a novel class of EDP-EAs that exhibit antiangiogenic, antitumorigenic, and antimigratory properties in OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.