A link between dietary fructose intake, gut-derived endotoxemia, and nonalcoholic fatty liver disease (NAFLD) has been suggested by the results of human and animal studies. To further investigate the role of gut-derived endotoxin in the onset of fructose-induced NAFLD, Toll-like receptor (TLR-) 4-mutant (C3H/HeJ) mice and wildtype (C3H/HouJ) mice were either fed plain water or water enriched with 30% fructose for 8 weeks. Hepatic steatosis, plasma alanine aminotransferase (ALT), and markers of insulin resistance as well as portal endotoxin levels were determined. Hepatic levels of myeloid differentiation factor 88 (MyD88), interferon regulatory factor (IRF) 3 and 7, and tumor necrosis factor alpha (TNF␣) as well as markers of lipid peroxidation were assessed. Chronic intake of 30% fructose solution caused a significant increase in hepatic steatosis and plasma ALT levels in wildtype animals in comparison to water controls. In fructose-fed TLR-4 mutant mice, hepatic triglyceride accumulation was significantly reduced by Ϸ40% in comparison to fructose-fed wildtype mice and plasma ALT levels were at the level of water-fed controls. No difference in portal endotoxin concentration between fructose-fed wildtype and TLR-4-mutant animals was detected. In contrast, hepatic lipid peroxidation, MyD88, and TNF␣ levels were significantly decreased in fructose-fed TLR-4-mutant mice in comparison to fructose-fed wildtype mice, whereas IRF3 and IRF7 expression remained unchanged. Markers of insulin resistance (e.g., plasma TNF␣, retinol binding protein 4, and hepatic phospho-AKT) were only altered in fructose-fed wildtype animals. Conclusion: Taken together, these data further support the hypothesis that in mice the onset of fructose-induced NAFLD is associated with intestinal bacterial overgrowth and increased intestinal permeability, subsequently leading to an endotoxin-dependent activation of hepatic Kupffer cells.
Results of animal experiments suggest that consumption of refined carbohydrates (e.g. fructose) can result in small intestinal bacterial overgrowth and increased intestinal permeability, thereby contributing to the development of nonalcoholic fatty liver disease (NAFLD). Furthermore, increased plasminogen activator inhibitor (PAI)-1 has been linked to liver damage of various etiologies (e.g. alcohol, endotoxin, nonalcoholic). The aim of the present pilot study was to compare dietary factors, endotoxin, and PAI-1 concentrations between NAFLD patients and controls. We assessed the dietary intake of 12 patients with NAFLD and 6 control subjects. Plasma endotoxin and PAI-1 concentrations as well as hepatic expression of PAI-1 and toll-like receptor (TLR) 4 mRNA were determined. Despite similar total energy, fat, protein, and carbohydrate intakes, patients with NAFLD consumed significantly more fructose than controls. Endotoxin and PAI-1 plasma concentrations as well as hepatic TLR4 and PAI-1 mRNA expression of NAFLD patients were significantly higher than in controls. The plasma PAI-1 concentration was positively correlated with the plasma endotoxin concentration (Spearman r = 0.83; P < 0.005) and hepatic TLR4 mRNA expression (Spearman r = 0.54; P < 0.05). Hepatic mRNA expression of PAI-1 was positively associated with dietary intakes of carbohydrates (Spearman r = 0.67; P < 0.01), glucose (Spearman r = 0.58; P < 0.01), fructose (Spearman r = 0.58; P < 0.01), and sucrose (Spearman r = 0.70; P < 0.01). In conclusion, our results suggest that dietary fructose intake, increased intestinal translocation of bacterial endotoxin, and PAI-1 may contribute to the development of NAFLD in humans.
Background & Aims-The biguanide drug metformin has recently been found to improve steatosis and liver damage in animal models and in humans with non-alcoholic steatohepatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.