Highly mobile marine species in areas with no obvious geographic barriers are expected to show low levels of genetic differentiation. However, small-scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine-scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (F(ST) = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (r = 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite-based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA Φ(ST) = 0.272, P < 0.001). This study demonstrates the ability of genetic techniques to expose fine-scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter-related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine-scale population structure among bottlenose dolphins in Moreton Bay.
The vocal repertoire of many delphinid odontocetes includes narrowband tonal whistles used mainly for communication. The aim of this study was to describe the whistle repertoire of short-beaked common dolphins, Delphinus delphis, recorded in the Celtic Sea between May and August 2005. The 1835 whistles recorded were classified into six broad categories and 30 sub-types, of which simple upsweeps and downsweeps were the most common. Furthermore, the parameters duration, inflections, steps and various frequency variables were measured. The whistles covered a frequency span from 3.56 kHz to 23.51 kHz and had durations between 0.05 and 2.02 seconds. Whistle parameters varied with behavioural context, group size and between encounters. The whistle repertoire of Celtic Sea common dolphins was compared to that of D. delphis from the Western Approaches of the English Channel, recorded during a survey between January and March 2004. The relative abundances of the broad whistle types did not differ between the two locations, but most whistle parameters were significantly different: almost all frequency variables measured were significantly higher in English Channel whistles. This may indicate some degree of population structuring of short-beaked common dolphins around Britain. Alternatively, the common dolphins in the English Channel may have shifted the frequencies of their vocalizations up to avoid masking by low-frequency ambient noise produced by high levels of vessel traffic in this area.
Investigating resource partitioning among mobile marine predators such as cetaceans is challenging. Here we integrate multiple methodologies (analyses of habitat use, stable isotopes and trace elements) to assess ecological niche partitioning amongst two genetically divergent sympatric subpopulations (North and South) of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Moreton Bay, Australia. Comparisons of the mean locations (latitude, longitude) and environmental variables (distance from sandbanks, distance from shore and water depth) observed at sightings of biopsy-sampled individuals indicated that the North subpopulation occurred in the northwestern bay in significantly deeper water than the South subpopulation, which was found in southeastern nearshore waters and closer to sandbanks. Ratios of stable carbon and nitrogen isotopes in skin samples suggested that North dolphins foraged on higher trophic level prey in relatively more pelagic, offshore habitats, while South dolphins foraged on lower trophic prey in more nearshore, demersal and/or benthic habitats. Habitat partitioning was also reflected in higher blubber concentrations of most of the 13 measured trace elements, in particular lead, in the coastal South compared to the more pelagic North dolphins. These findings indicate that genetic subpopulations of bottlenose dolphins in Moreton Bay are adapted to different niches.
Moreton Bay, Queensland, Australia is an area of high biodiversity and conservation value and home to two sympatric sub-populations of Indo-Pacific bottlenose dolphins (Tursiops aduncus). These dolphins live in close proximity to major urban developments. Successful management requires information regarding their abundance. Here, we estimate total and effective population sizes of bottlenose dolphins in Moreton Bay using photo-identification and genetic data collected during boat-based surveys in 2008–2010. Abundance (N) was estimated using open population mark-recapture models based on sighting histories of distinctive individuals. Effective population size (Ne) was estimated using the linkage disequilibrium method based on nuclear genetic data at 20 microsatellite markers in skin samples, and corrected for bias caused by overlapping generations (Nec). A total of 174 sightings of dolphin groups were recorded and 365 different individuals identified. Over the whole of Moreton Bay, a population size N of 554±22.2 (SE) (95% CI: 510–598) was estimated. The southern bay sub-population was small at an estimated N = 193±6.4 (SE) (95% CI: 181–207), while the North sub-population was more numerous, with 446±56 (SE) (95% CI: 336–556) individuals. The small estimated effective population size of the southern sub-population (Nec = 56, 95% CI: 33–128) raises conservation concerns. A power analysis suggested that to reliably detect small (5%) declines in size of this population would require substantial survey effort (>4 years of annual mark-recapture surveys) at the precision levels achieved here. To ensure that ecological as well as genetic diversity within this population of bottlenose dolphins is preserved, we consider that North and South sub-populations should be treated as separate management units. Systematic surveys over smaller areas holding locally-adapted sub-populations are suggested as an alternative method for increasing ability to detect abundance trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.