We present a workflow for kinetic modeling of biocatalytic reactions which combines methods from Bayesian learning and uncertainty quantification for model calibration, model selection, evaluation, and model reduction in a consistent statistical framework. Our workflow is particularly tailored to sparse data settings in which a considerable variability of the parameters remains after the models have been adapted to available data, a ubiquitous problem in many real-world applications. Our workflow is exemplified on an enzyme-catalyzed two-substrate reaction mechanism describing the symmetric carboligation of 3,5-dimethoxy-benzaldehyde to (R)-3,3 0 ,5,5 0tetramethoxybenzoin catalyzed by benzaldehyde lyase from Pseudomonas fluorescens.Results indicate a substrate-dependent inactivation of enzyme, which is in accordance with other recent studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.