Adeno-associated virus (AAV) delivery of potent and broadly neutralizing antibodies (bNAbs is a promising approach for the prevention of HIV-1 infection. The immunoglobulin G (IgG)1 subtype is usually selected for this application, because it efficiently mediates antibody effector functions and has a somewhat longer half-life. However, the use of IgG1-Fc has been associated with the generation of anti-drug antibodies (ADAs) that correlate with loss of antibody expression. In contrast, we have shown that expression of the antibody-like molecule eCD4-Ig bearing a rhesus IgG2-Fc domain showed reduced immunogenicity and completely protected rhesus macaques from simian-HIV (SHIV)-AD8 challenges. To directly compare the performance of the IgG1-Fc and the IgG2-Fc domains in a prophylactic setting, we compared AAV1 expression of rhesus IgG1 and IgG2 forms of four anti-HIV bNAbs: 3BNC117, NIH45-46, 10-1074, and PGT121. Interestingly, IgG2-isotyped bNAbs elicited significantly lower ADA than their IgG1 counterparts. We also observed significant protection from two SHIV-AD8 challenges in macaques expressing IgG2-isotyped bNAbs, but not from those expressing IgG1. Our data suggest that monoclonal antibodies isotyped with IgG2-Fc domains are less immunogenic than their IgG1 counterparts, and they highlight ADAs as a key barrier to the use of AAV1-expressed bNAbs.
The human immunodeficiency virus type 1 (HIV-1) entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralized all HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates that it has been tested against, suggesting that it may be useful in clinical settings, where antibody escape is a concern. Here, we characterize three new eCD4-Ig variants, each with a different architecture and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as the original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented the promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications. HIV-1 bNAbs have properties different from those of antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral life cycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the utility of antibodies as a treatment for HIV-1 infection or as part of an effort to eradicate latently infected cells. eCD4-Ig is an antibody-like entry inhibitor that closely mimics HIV-1's obligate receptors. eCD4-Ig appears to be qualitatively different from antibodies, since it neutralizes all HIV-1, HIV-2, and SIV isolates. Here, we characterize three new structurally distinct eCD4-Ig variants and show that each excels in a key property useful to prevent, treat, or cure an HIV-1 infection. For example, one variant neutralized HIV-1 most efficiently, while others best enlisted natural killer cells to eliminate infected cells. These observations will help generate eCD4-Ig variants optimized for different clinical applications.
Broadly neutralizing antibodies (bNAbs) target five major epitopes on the HIV-1 envelope glycoprotein (Env). The most potent bNAbs have median half-maximal inhibitory concentration (IC50) values in the nanomolar range, and the broadest bNAbs neutralize up to 98% of HIV-1 strains. The engineered HIV-1 entry inhibitor eCD4-Ig has greater breadth than bNAbs and similar potency. eCD4-Ig is markedly more potent than CD4-Ig due to its C-terminal coreceptor-mimetic peptide. Here we investigated whether the coreceptor-mimetic peptide mim6 improved the potency of bNAbs with different epitopes. We observed that when mim6 was appended to the C terminus of the heavy chains of bNAbs, this sulfopeptide improved the potency of all classes of bNAbs against HIV-1 isolates that are sensitive to neutralization by the sulfopeptide alone. However, mim6 did not significantly enhance neutralization of other isolates when appended to most classes of bNAbs, with one exception. Specifically, mim6 improved the potency of bNAbs of the V3-glycan class, including PGT121, PGT122, PGT128, and 10-1074, by an average of 2-fold for all HIV-1 isolates assayed. Despite this difference, 10-1074 does not induce exposure of the coreceptor-binding site, and addition of mim6 to 10-1074 did not promote shedding of the gp120 subunit of Env. Mixtures of 10-1074 and an Fc domain fused to mim6 neutralized less efficiently than a 10-1074/mim6 fusion, indicating that mim6 enhances the avidity of this fusion. Our data show that mim6 can consistently improve the potency of V3-glycan antibodies and suggest that these antibodies bind in an orientation that facilitates mim6 association with Env. IMPORTANCE HIV-1 requires both the cellular receptor CD4 and a tyrosine-sulfated coreceptor to infect its target cells. CD4-Ig is a fusion of the HIV-1-binding domains of CD4 with an antibody Fc domain. Previous studies have demonstrated that the potency of CD4-Ig is markedly increased by appending a coreceptor-mimetic sulfopeptide to its C terminus. We investigated whether this coreceptor-mimetic peptide improves the potency of broadly neutralizing antibodies (bNAbs) targeting five major epitopes on the HIV-1 envelope glycoprotein (Env). We observed that inclusion of the sulfopeptide dramatically improved the potency of all bNAb classes against isolates with more-open Env structures, typically those that utilize the coreceptor CXCR4. In contrast, the sulfopeptide improved only V3-glycan antibodies when neutralizing primary isolates, on average by 2-fold. These studies improve the potency of one class of bNAbs, show that coreceptor-mimetic sulfopeptides enhance neutralization through distinct mechanisms, and provide insight for the design of novel multispecific entry inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.