-Catenin-dependent canonical Wnt signaling plays an important role in bone metabolism by controlling differentiation of bone-forming osteoblasts and bone-resorbing osteoclasts. To investigate its function in osteocytes, the cell type constituting the majority of bone cells, we generated osteocyte-specific -catenindeficient mice (Ctnnb1 loxP/loxP ; Dmp1-Cre). Homozygous mutants were born at normal Mendelian frequency with no obvious morphological abnormalities or detectable differences in size or body weight, but bone mass accrual was strongly impaired due to early-onset, progressive bone loss in the appendicular and axial skeleton with mild growth retardation and premature lethality. Cancellous bone mass was almost completely absent, and cortical bone thickness was dramatically reduced. The low-bone-mass phenotype was associated with increased osteoclast number and activity, whereas osteoblast function and osteocyte density were normal. Cortical bone Wnt/-catenin target gene expression was reduced, and of the known regulators of osteoclast differentiation, osteoprotegerin (OPG) expression was significantly downregulated in osteocyte bone fractions of mutant mice. Moreover, the OPG levels expressed by osteocytes were higher than or comparable to the levels expressed by osteoblasts during skeletal growth and at maturity, suggesting that the reduction in osteocytic OPG and the concomitant increase in osteocytic RANKL/OPG ratio contribute to the increased number of osteoclasts and resorption in osteocyte-specific -catenin mutants. Together, these results reveal a crucial novel function for osteocyte -catenin signaling in controlling bone homeostasis.The adult skeleton is continuously remodeled in a tightly regulated manner by the coupled activity of bone-resorbing osteoclasts and bone-forming osteoblasts to maintain skeletal integrity and bone homeostasis (24,46). A similar complex regulatory network of defined, but not necessarily coupled, osteoblast and osteoclast action is required during development and growth, when bone modeling ensures functional bone morphology and bone mass accrual, which in mice occurs throughout the first 3 to 4 months of life until peak bone mass is reached.Osteoblasts differentiate from mesenchymal bone marrow progenitor cells into bone-forming osteoblasts that reside on the bone surface and deposit new bone matrix. In contrast, osteoclasts are derived from hematopoietic bone marrow precursor cells that belong to the myeloid monocyte/macrophage lineage (63). However, the majority, i.e., more than 90 to 95% of all bone cells in the adult skeleton, are osteocytes (10), terminally differentiated cells of the mesenchymal osteoblast lineage residing in small lacunae found at regular intervals within the mineralized bone matrix. They extend long thin cellular protrusions or dendrites, which travel through small channels (canaliculi) inside the compact bone, but also reach the bone surface and bone marrow compartment (8,30). By forming gap junctions to neighboring cells, osteocytes are con...
Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.
Humans lacking sclerostin display progressive bone overgrowth due to increased bone formation. Although it is well established that sclerostin is an osteocyte-secreted bone formation inhibitor, the underlying molecular mechanisms are not fully elucidated. We identified in tandem affinity purification proteomics screens LRP4 (low density lipoprotein-related protein 4) as a sclerostin interaction partner. Biochemical assays with recombinant proteins confirmed that sclerostin LRP4 interaction is direct. Interestingly, in vitro overexpression and RNAi-mediated knockdown experiments revealed that LRP4 specifically facilitates the previously described inhibitory action of sclerostin on Wnt1/-catenin signaling. We found the extracellular -propeller structured domain of LRP4 to be required for this sclerostin facilitator activity. Immunohistochemistry demonstrated that LRP4 protein is present in human and rodent osteoblasts and osteocytes, both presumed target cells of sclerostin action. Silencing of LRP4 by lentivirus-mediated shRNA delivery blocked sclerostin inhibitory action on in vitro bone mineralization. Notably, we identified two mutations in LRP4 (R1170W and W1186S) in patients suffering from bone overgrowth. We found that these mutations impair LRP4 interaction with sclerostin and its concomitant sclerostin facilitator effect. Together these data indicate that the interaction of sclerostin with LRP4 is required to mediate the inhibitory function of sclerostin on bone formation, thus identifying a novel role for LRP4 in bone.
Expression of the osteocyte-derived bone formation inhibitor sclerostin in adult bone requires a distant enhancer. We show that MEF2 transcription factors control this enhancer and mediate inhibition of sclerostin expression by PTH. Introduction: Sclerostin encoded by the SOST gene is a key regulator of bone formation. Lack of SOST expression is the cause for the progressive bone overgrowth disorders sclerosteosis and Van Buchem disease. We have previously identified a distant enhancer within the 52-kb Van Buchem disease deletion downstream of the SOST gene that is essential for its expression in adult bone. Furthermore, we and others have reported that SOST expression is suppressed by PTH. The aim of this study was to identify transcription factors involved in SOST bone enhancer activity and mediating PTH responsiveness. Materials and Methods: Regulation of the SOST enhancer and promoter was studied by luciferase reporter gene assays. Transcription factor binding sites were mapped by footprint analysis and functional mutation analyses using transient transfections of osteoblast-like UMR-106 cells that exhibit endogenous SOST expression. Specific transcription factor binding was predicted by sequence analysis and shown by gel retardation assays and antibody-induced supershifts. Expression of myocyte enhancer factors 2 (MEF2) was detected by in situ hybridization, quantitative RT-PCR (qPCR), and immunohistochemistry. The role of MEF2s in SOST expression was assessed by reporter gene assays and siRNA-mediated RNA knockdown. Results: PTH completely suppressed the transcriptional activity of the SOST bone enhancer but did not affect the SOST promoter. A MEF2 response element was identified in the bone enhancer. It was essential for transcriptional activation, bound MEF2 transcription factors, and mediated PTH responsiveness. Expression of MEF2s in bone was shown by qPCR, in situ hybridization, and immunohistochemistry. MEF2s and sclerostin co-localized in osteocytes. Enhancer activity was stimulated by MEF2C overexpression and inhibited by co-expression of a dominant negative MEF2C mutant. Finally, siRNA-mediated knockdown of MEF2A, C, and D suppressed endogenous SOST expression in UMR-106 osteoblast-like cells. Conclusions: These data strongly suggest that SOST expression in osteocytes of adult bone and its inhibition by PTH is mediated by MEF2A, C, and D transcription factors controlling the SOST bone enhancer. Hence, MEF2s are implicated in the regulation of adult bone mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.