P-glycoprotein (Pgp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance in the treatment of cancers. Substrate promiscuity is a hallmark of Pgp activity, thus a structural description of polyspecific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo-Pgp at 3.8 Å reveals an internal cavity of ∼6,000 Å 3 with a 30 Å separation of the two nucleotide binding domains (NBD). Two additional Pgp structures with cyclic peptide inhibitors demonstrate distinct drug binding sites in the internal cavity capable of stereo-selectivity that is based on hydrophobic and aromatic interactions. Apo-and drug-bound Pgp structures have portals open to the cytoplasm and the inner leaflet of the lipid bilayer for drug entry. The inward-facing conformation represents an initial stage of the transport cycle that is competent for drug binding.
P-glycoprotein (Pgp or multidrug-resistance protein) shows drug-stimulated ATPase activity. The catalytic sites are known to be of low affinity and specificity for nucleotides. From the sequence, two nucleotide sites are predicted per Pgp molecule. Using plasma membranes from a multidrug-resistant Chinese hamster ovary cell line, which are highly enriched in Pgp, we show that vanadate-induced trapping of nucleotide at a single catalytic site produces stably inhibited Pgp, with t 1/2 for reactivation of ATPase activity of 84 min at 37 degrees C and >30 h at 4 degrees C. Reactivation of ATPase correlated with release of trapped nucleotide. Concentrations of MgATP and MgADP required to produce 50% inhibition were 9 and 15 microM, respectively, thus the apparent affinity for nucleotide is greatly increased by vanadate-trapping. The trapped nucleotide species was ADP. Divalent Cation was required, with magnesium, manganese, and cobalt all effective: cobalt yielded a very stable inhibited species, t1/2 at 37 degrees C = 18 h. No photocleavage of Pgp was observed after vanadate trapping with MgATP, nor was UV-induced photolabeling of Pgp by trapped adenine nucleotide observed. Vanadate-trapping with 8-azido-ATP followed by UV irradiation caused permanent inactivation and specific labeling of Pgp. Vanadate-induced inhibition was also shown with pure, reconstituted Pgp, with similar characteristics to those in plasma membranes. Vanadate trapping overcomes technical difficulties posed by lack of high affinity nucleotide-binding site(s) or a covalent enzyme-phosphate catalytic intermediate in Pgp. The finding that vanadate trapping of nucleotide at just one site/Pgp is sufficient to give full inhibition at ATPase activity shows that the two predicted nucleotide sites can not function independently as catalytic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.