BackgroundWearable devices may generate valuable data for global health research for low- and middle-income countries (LMICs). However, wearable studies in LMICs are scarce. This study aims to investigate the use of consumer-grade wearables to generate individual-level data in vulnerable populations in LMICs, focusing on the acceptability (quality of the devices being accepted or even liked) and feasibility (the state of being workable, realizable, and practical, including aspects of data completeness and plausibility).MethodsWe utilized a mixed-methods approach within the health and demographic surveillance system (HDSS) to conduct a case study in Nouna, Burkina Faso (BF). All HDSS residents older than 6 years were eligible. N = 150 participants were randomly selected from the HDSS database to wear a wristband tracker (Withings Pulse HR) and n = 69 also a thermometer patch (Tucky thermometer) for 3 weeks. Every 4 days, a trained field worker conducted an acceptability questionnaire with participants, which included questions for the field workers as well. Descriptive and qualitative thematic analyses were used to analyze the responses of study participants and field workers.ResultsIn total, n = 148 participants were included (and n = 9 field workers). Participant's acceptability ranged from 94 to 100% throughout the questionnaire. In 95% of the cases (n = 140), participants reported no challenges with the wearable. Most participants were not affected by the wearable in their daily activities (n = 122, 83%) and even enjoyed wearing them (n = 30, 20%). Some were concerned about damage to the wearables (n = 7, 5%). Total data coverage (i.e., the proportion of the whole 3-week study duration covered by data) was 43% for accelerometer (activity), 3% for heart rate, and 4% for body shell temperature. Field workers reported technical issues like faulty synchronization (n = 6, 1%). On average, participants slept 7 h (SD 3.2 h) and walked 8,000 steps per day (SD 5573.6 steps). Acceptability and data completeness were comparable across sex, age, and study arms.ConclusionWearable devices were well-accepted and were able to produce continuous measurements, highlighting the potential for wearables to generate large datasets in LMICs. Challenges constituted data missingness mainly of technical nature. To our knowledge, this is the first study to use consumer-focused wearables to generate objective datasets in rural BF.
Background Although climate change is one of the biggest global health threats, individual-level and short-term data on direct exposure and health impacts are still scarce. Wearable electronic devices (wearables) present a potential solution to this research gap. Wearables have become widely accepted in various areas of health research for ecological momentary assessment, and some studies have used wearables in the field of climate change and health. However, these studies vary in study design, demographics, and outcome variables, and existing research has not been mapped. Objective In this review, we aimed to map existing research on wearables used to detect direct health impacts and individual exposure during climate change–induced weather extremes, such as heat waves or wildfires. Methods We conducted a scoping review according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework and systematically searched 6 databases (PubMed [MEDLINE], IEEE Xplore, CINAHL [EBSCOhost], WoS, Scopus, Ovid [MEDLINE], and Google Scholar). The search yielded 1871 results. Abstracts and full texts were screened by 2 reviewers (MK and IM) independently using the inclusion and exclusion criteria. The inclusion criteria comprised studies published since 2010 that used off-the-shelf wearables that were neither invasive nor obtrusive to the user in the setting of climate change–related weather extremes. Data were charted using a structured form, and the study outcomes were narratively synthesized. Results The review included 55,284 study participants using wearables in 53 studies. Most studies were conducted in upper–middle-income and high-income countries (50/53, 94%) in urban environments (25/53, 47%) or in a climatic chamber (19/53, 36%) and assessed the health effects of heat exposure (52/53, 98%). The majority reported adverse health effects of heat exposure on sleep, physical activity, and heart rate. The remaining studies assessed occupational heat stress or compared individual- and area-level heat exposure. In total, 26% (14/53) of studies determined that all examined wearables were valid and reliable for measuring health parameters during heat exposure when compared with standard methods. Conclusions Wearables have been used successfully in large-scale research to measure the health implications of climate change–related weather extremes. More research is needed in low-income countries and vulnerable populations with pre-existing conditions. In addition, further research could focus on the health impacts of other climate change–related conditions and the effectiveness of adaptation measures at the individual level to such weather extremes.
BACKGROUND Individual-level data on direct exposure and health impacts are scarce in the field of climate change and health. Wearable electronic devices (wearables) have become widely accepted in various areas of health research for the so-called ecological momentary assessment. OBJECTIVE We conducted this scoping review to map existing research on wearables used to detect direct health impacts and individual exposure during climate change-induced weather extremes such as heatwaves or wildfires. METHODS We conducted a scoping review and systematically searched six databases (PubMed, IEEE Xplore, CINAHL, WoS, Scopus, Ovid) and Google Scholar. A total of 1,871 references were screened. RESULTS The review comprised a total of 55,284 study participants using wearables in 53 studies. Most studies were conducted in upper-middle and high-income countries (50/53; 94%) in urban environments (25/53; 47%) or in a climatic chamber (19/53; 36%) and assessed health effects of heat exposure (52/53; 98%). The majority found adverse health effects of heat exposure on sleep, physical activity, and heart rate. Remaining studies assessed occupational heat stress or compared individual and area-level heat exposure. Fourteen studies (14/53; 26%) determined that all examined wearables were valid and reliable for measuring health parameters during heat exposure when compared to standard methods. CONCLUSIONS Wearables have been utilized successfully in large-scale research to measure the health implications of climate change-related weather extremes. Further research is needed in low-income countries and vulnerable populations with pre-existing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.