Septic shock is characterized by increased vascular permeability and hypotension despite increased cardiac output. Numerous vasoactive cytokines are upregulated during sepsis, including angiopoietin 2 (ANG2), which increases vascular permeability. Here we report that mice engineered to inducibly overexpress ANG2 in the endothelium developed sepsis-like hemodynamic alterations, including systemic hypotension, increased cardiac output, and dilatory cardiomyopathy. Conversely, mice with cardiomyocyte-restricted ANG2 overexpression failed to develop hemodynamic alterations. Interestingly, the hemodynamic alterations associated with endothelial-specific overexpression of ANG2 and the loss of capillary-associated pericytes were reversed by intravenous injections of adeno-associated viruses (AAVs) transducing cDNA for angiopoietin 1, a TIE2 ligand that antagonizes ANG2, or AAVs encoding PDGFB, a chemoattractant for pericytes. To confirm the role of ANG2 in sepsis, we i.p. injected LPS into C57BL/6J mice, which rapidly developed hypotension, acute pericyte loss, and increased vascular permeability. Importantly, ANG2 antibody treatment attenuated LPS-induced hemodynamic alterations and reduced the mortality rate at 36 hours from 95% to 61%. These data indicate that ANG2-mediated microvascular disintegration contributes to septic shock and that inhibition of the ANG2/ TIE2 interaction during sepsis is a potential therapeutic target.
Myeloid-related proteins (MRPs) 8 and 14 are cytosolic proteins secreted from myeloid cells as proinflammatory mediators. Currently, the functional role of circulating extracellular MRP8/14 is unclear. Our present study identifies extracellular MRP8/14 as an autocrine player in the leukocyte adhesion cascade. We show that E-selectin–PSGL-1 interaction during neutrophil rolling triggers Mrp8/14 secretion. Released MRP8/14 in turn activates a TLR4-mediated, Rap1-GTPase-dependent pathway of rapid β2 integrin activation in neutrophils. This extracellular activation loop reduces leukocyte rolling velocity and stimulates adhesion. Thus, we identify Mrp8/14 and TLR4 as important modulators of the leukocyte recruitment cascade during inflammation in vivo.
Atherosclerotic lesions are asymmetric focal thickenings of the intima of arteries that consist of lipids, various cell types and extracellular matrix (ECM). These lesions lead to vascular occlusion representing the most common cause of death in the Western world. The main cause of vascular occlusion is rupture of atheromatous lesions followed by thrombus formation. Fibronectin (FN) is one of the earliest ECM proteins deposited at atherosclerosis-prone sites and was suggested to promote atherosclerotic lesion formation. Here, we report that atherosclerosis-prone apolipoprotein E-null mice lacking hepatocyte-derived plasma FN (pFN) fed with a pro-atherogenic diet display dramatically reduced FN depositions at atherosclerosis-prone areas, which results in significantly smaller and fewer atherosclerotic plaques. However, the atherosclerotic lesions from pFN-deficient mice lacked vascular smooth muscle cells and failed to develop a fibrous cap. Thus, our results demonstrate that while FN worsens the course of atherosclerosis by increasing the atherogenic plaque area, it promotes the formation of the protective fibrous cap, which in humans prevents plaques rupture and vascular occlusion.
SummaryCarefully orchestrated intercellular communication is an essential prerequisite for the development of multicellular organisms. In recent years, tunneling nanotubes (TNT) have emerged as a novel and widespread mechanism of cell-cell communication. However, the molecular basis of their formation is still poorly understood. In the present study we report that the transmembrane MHC class III protein leukocyte specific transcript 1 (LST1) induces the formation of functional nanotubes and is required for endogenous nanotube generation. Mechanistically, we found that LST1 induces nanotube formation by recruiting the small GTPase RalA to the plasma membrane and promoting its interaction with the exocyst complex. Furthermore, we determined that LST1 recruits the actincrosslinking protein filamin to the plasma membrane and interacts with M-Sec, myosin and myoferlin. These results allow us to suggest a molecular model for nanotube generation. In this proposal LST1 functions as a membrane scaffold mediating the assembly of a multimolecular complex, which controls the formation of functional nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.