The recently developed 3D micro X-ray fluorescence spectroscopy (3D Micro-XRF) enables three-dimensional resolved, nondestructive investigation of elemental distribution in samples in the micrometer regime. Establishing a reliable quantification procedure is the precondition to render this spectroscopic method into a true analytical tool. One prominent field of application is the investigation of stratified material. A procedure for the quantitative reconstruction of the composition of stratified material by means of 3D Micro-XRF is proposed and validated. With the procedure, it is now possible to determine nondestructively the chemical composition and the thickness of layers. As no adequate stratified reference samples were available for validation, stratified reference material has been developed that is appropriate for 3D Micro-XRF or other depth-sensitive X-ray techniques.
A new approach for the nondestructive reconstruction of stratified systems with constant elemental composition but with varying chemical compounds has been developed. The procedure is based on depth scans with a confocal X-ray fluorescence setup at certain energies near absorption edges. These so-called marker energies, where XAFS signals of the involved chemical compounds differ significantly, can also be used to uncover the chemical composition and its topology. A prominent field of application is homogeneous material that is degraded due to chemical reactions like oxidation or reduction. A procedure for the semiquantitative reconstruction of stratified material by means of depth scans at marker energies is elaborated and validated and a three-dimensional mapping is presented.
A new approach for chemical speciation in stratified systems using 3D Micro-XAFS spectroscopy is developed by combining 3D Micro X-ray Fluorescence Spectroscopy (3D Micro-XRF) and conventional X-ray Absorption Fine Structure Spectroscopy (XAFS). A prominent field of application is stratified materials within which depth-resolved chemical speciation is required. Measurements are collected in fluorescence mode which in general lead to distorted spectra due to absorption effects. Developing a reliable reconstruction algorithm for obtaining undistorted spectra for superficial and in-depth layers is proposed and validated. The developed algorithm calculates the attenuation coefficients of the analyte for the successive layers facilitating a new spectroscopic tool for three-dimensionally resolved nondestructive chemical speciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.