The filamentous, non-heterocystous cyanobacterium Microcoleus chthonoplastes is a cosmopolitan organism, known to build microbial mats in a variety of different environments. Although most of these cyanobacterial mats are known for their capacity to fix dinitrogen, M. chthonoplastes has not been assigned as a diazotrophic organism. None of the strains that were correctly identified as M. chthonoplastes has been shown to fix dinitrogen and it has repeatedly been reported that these organisms lacked the cyanobacterial nifH, the structural gene for dinitrogenase reductase. In this study, we show that a complete nif-gene cluster is present in the genome of M. chthonoplastes PCC 7420 and that the three structural nitrogenase genes, nifHDK, are present in a collection of axenic strains of M. chthonoplastes from distant locations. Phylogenetic analysis of nifHDK revealed that they cluster with the Deltaproteobacteria and that they are closely related to Desulfovibrio. The nif operon is flanked by typical cyanobacterial genes, suggesting that it is an integral part of the M. chthonoplastes genome. In this study, we provide evidence that the nif operon of M. chthonoplastes is acquired through horizontal gene transfer. Moreover, the presence of the same nif-cluster in M. chthonoplastes isolates derived from various sites around the world suggests that this horizontal gene transfer event must have occurred early in the evolution of M. chthonoplastes. We have been unable to express nitrogenase in cultures of M. chthonoplastes, but we show that these genes were expressed under natural conditions in the field.
The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas stutzeri strain BAL361 and Raoultella ornithinolytica strain BAL286, which are gammaproteobacteria, and Rhodopseudomonas palustris strain BAL398, an alphaproteobacterium. Genome sequencing revealed that all were metabolically versatile and that the gene clusters encoding the N2 fixation complex varied in length and complexity between isolates. All three isolates could sustain growth by N2 fixation in the absence of reactive N, and this fixation was stimulated by low concentrations of oxygen in all three organisms (≈4 to 40 µmol O2 liter−1). P. stutzeri BAL361 did, however, fix N at up to 165 µmol O2 liter−1, presumably accommodated through aggregate formation. Glucose stimulated N2 fixation in general, and reactive N repressed N2 fixation, except that ammonium (NH4+) stimulated N2 fixation in R. palustris BAL398, indicating the use of nitrogenase as an electron sink. The lack of correlations between nitrogenase reductase gene expression and ethylene (C2H4) production indicated tight posttranscriptional-level control. The N2 fixation rates obtained suggested that, given the right conditions, these heterotrophic diazotrophs could contribute significantly to in situ rates.
The vastness of microbial diversity implies that an almost infinite number of individuals needs to be identified to accurately describe such communities. Practical and economical constraints may therefore prevent appropriate study designs. However, for many questions in ecology it is not essential to know the actual diversity but rather the trends among samples thereof. It is, hence, important to know to what depth microbial communities need to be sampled to accurately measure trends in diversity. We used three data sets of freshwater and sediment bacteria, where diversity was explored using 454 pyrosequencing. Each data set contained 6-15 communities from which 15 000-20 000 16S rRNA gene sequences each were obtained. These data sets were subsampled repeatedly to 10 different depths down to 200 sequences per community. Diversity estimates varied with sequencing depth, yet, trends in diversity among samples were less sensitive. We found that 1000 denoised sequences per sample explained to 90% the trends in β-diversity (Bray-Curtis index) among samples observed for 15 000-20 000 sequences. Similarly, 5000 denoised sequences were sufficient to describe trends in α-diversity (Shannon index) with the same accuracy. Further, 5000 denoised sequences captured to more than 80% the trends in Chao1 richness and Pielou's evenness.
The fixation of nitrogen in cyanobacterial mats situated along the littoral gradient on a Dutch barrier island was investigated by using a high-resolution online, near-real-time acetylene reduction assay. Light-response curves of nitrogenase activity yielded a variety of physiological parameters that changed during a day-night cycle. The fitted parameters were used to calculate nitrogen fixation from the incident natural irradiance over several days in two different mat types. Mats occurring in the higher regions of the littoral were composed of a diverse community of cyanobacteria, consisting of both heterocystous and non-heterocystous filamentous species, whereas closer to the low water mark the mats contained mainly non-heterocystous filamentous cyanobacteria. Although the daily cycles of nitrogenase activity differed considerably between the two types of mats, the daily integrated rates of nitrogen fixation were the same. Moreover, the daily integrated nitrogen fixation seemed to be independent from the daily incident photon flux. The measurements further suggest that different types of diazotrophic cyanobacteria become active at different times of the day and that the composition of the mat community affects maximal and daily patterns of nitrogenase activity. Notwithstanding the apparent light independence of nitrogen fixation, the lightresponse curves as well as light action spectra unequivocally showed that cyanobacteria were the predominant nitrogen-fixing organisms in these mats. It is concluded that the diversity of nitrogenfixing cyanobacteria leads to an optimization of this process.
The structure of the microbial community and the diversity of the functional gene for dinitrogenase reductase and its transcripts were investigated by analyzing >1400 16S rRNA gene and nifH sequences from two microbial mats situated in the intertidal zone of the Dutch barrier island Schiermonnikoog. Although both microbial mat communities were dominated by Cyanobacteria, they differed with respect to the composition of the total bacterial community. Proteobacteria-related sequences were retrieved as the second most abundant group higher up in the littoral (Station I), whereas Bacteroidetes were the second most abundant group at the low water mark (Station II). The diazotrophic (nitrogen-fixing) communities at both stations were also different, but had more operational taxonomic units in common than the total bacterial community. Denaturing gradient gel electrophoresis also revealed differences in the total bacterial and diazotrophic community in two consecutive years. Analysis of the expression of nifH at Station I showed a discrepancy between the present and the active diazotrophic community. Transcript abundances of the different diazotrophs changed over a 24-h cycle and were dominated by cyanobacterial lineages in the daytime, while Gammaproteobacteria peaked at night. These variations might be responsible for the pattern in nitrogenase activity observed in these mats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.