Electromanipulation and electrical characterization of cancerous cells is becoming a topic of high interest as the results reported to date demonstrate a good differentiation among various types of cells from an electrical viewpoint. Dielectrophoresis and broadband dielectric spectroscopy are complementary tools for sorting, identification, and characterization of malignant cells and were successfully used on both primary tumor cells and culture cells as well. However, the literature is presenting a plethora of studies with respect to electrical evaluation of these type of cells, and this review is reporting a collection of information regarding the functioning principles of different types of dielectrophoresis setups, theory of cancer cell polarization, and electrical investigation (including here the polarization mechanisms). The interpretation of electrical characteristics against frequency is discussed with respect to interfacial/Maxwell−Wagner polarization and the parasitic influence of electrode polarization. Moreover, the electrical equivalent circuits specific to biological cells polarizations are discussed for a good understanding of the cells' morphology influence. The review also focuses on advantages of specific low-conductivity buffers employed currently for improving the efficiency of dielectrophoresis and provides a set of synthesized data from the literature highlighting clear differentiation between the crossover frequencies of different cancerous cells.
Here, we reported a study on the detection and electrical characterization of both cancer cell line and primary tumor cells. Dielectrophoresis (DEP) and electrical impedance spectroscopy (EIS) were jointly employed to enable the rapid and label-free differentiation of various cancer cells from normal ones. The primary tumor cells that were collected from two colorectal cancer patients and cancer cell lines (SW-403, Jurkat, and THP-1), and healthy peripheral blood mononuclear cells (PBMCs) were trapped first at the level of interdigitated microelectrodes with the help of dielectrophoresis. Correlation of the cells dielectric characteristics that was obtained via electrical impedance spectroscopy (EIS) allowed evident differentiation of the various types of cell. The differentiations were assigned to a “dielectric phenotype” based on their crossover frequencies. Finally, Randles equivalent circuit model was employed for highlighting the differences with regard to a series group of charge transport resistance and constant phase element for cancerous and normal cells.
The incidence and prevalence of skin cancers is currently increasing worldwide, with early detection, adequate treatment, and prevention of recurrences being topics of great interest for researchers nowadays. Although tumor biopsy remains the gold standard of diagnosis, this technique cannot be performed in a significant proportion of cases, so that the use of alternative methods with high sensitivity and specificity is becoming increasingly desirable. In this context, liquid biopsy appears to be a feasible solution for the study of cellular and molecular markers relevant to different types of skin cancers. Circulating tumor cells are just one of the components of interest obtained from performing liquid biopsy, and their study by complementary methods, such as dielectrophoresis, could bring additional benefits in terms of characterizing skin tumors and subsequently applying personalized therapy. One purpose of this review is to demonstrate the utility of liquid biopsy primarily in monitoring the most common types of skin tumors: basal cell carcinoma, squamous cell carcinoma, and malign melanoma. In addition, the originality of the article is based on the detailed presentation of the dielectrophoretic analysis method of the most important elements obtained from liquid biopsy, with direct impact on the clinical and therapeutic approach of skin tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.