SummaryNatural killer (NK) cells are innate lymphoid cells (ILCs) involved in antimicrobial and antitumoral responses. Several NK cell subsets have been reported in humans and mice, but their heterogeneity across organs and species remains poorly characterized. We assessed the diversity of human and mouse NK cells by single-cell RNA sequencing on thousands of individual cells isolated from spleen and blood. Unbiased transcriptional clustering revealed two distinct signatures differentiating between splenic and blood NK cells. This analysis at single-cell resolution identified three subpopulations in mouse spleen and four in human spleen, and two subsets each in mouse and human blood. A comparison of transcriptomic profiles within and between species highlighted the similarity of the two major subsets, NK1 and NK2, across organs and species. This unbiased approach provides insight into the biology of NK cells and establishes a rationale for the translation of mouse studies to human physiology and disease.
Most adult B cell lymphomas originate from germinal center (GC) B cells, but it is unclear to what extent B cells in overt lymphoma retain the functional dynamics of GC B cells or are blocked at a particular stage of the GC reaction. Here we used integrative single-cell analysis of phenotype, gene expression and variable-region sequence of the immunoglobulin heavy-chain locus to track the characteristic human GC B cell program in follicular lymphoma B cells. By modeling the cyclic continuum of GC B cell transitional states, we identified characteristic patterns of synchronously expressed gene clusters. GC-specific gene-expression synchrony was lost in single lymphoma B cells. However, distinct follicular lymphoma-specific cell states co-existed within single patient biopsies. Our data show that lymphoma B cells are not blocked in a GC B cell state but might adopt new dynamic modes of functional diversity, which opens the possibility of novel definitions of lymphoma identity.
Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN-I). What other functions pDCs exert in vivo during viral infections is controversial and more studies are needed to understand their orchestration. Here, we characterize indepth and link pDC activation states in animals infected by mouse cytomegalovirus, by combining Ifnb1 reporter mice with flow cytometry, single-cell RNA sequencing, confocal microscopy and a cognate CD4 T cell activation assay. We show that IFN-I production and T cell activation were performed by the same pDC, but sequentially in time and in different micro-anatomical locations. In addition, we show that pDC commitment to IFN-I production was marked early on by their downregulation of LIFR and promoted by cell-intrinsic TNF signaling. We propose a novel model of how individual pDCs are endowed to exert different functions in vivo during a viral infection in a manner tightly orchestrated in time and space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.