Within the field of linguistic fuzzy modeling with fuzzy rule-based systems, the automatic derivation of the linguistic fuzzy rules from numerical data is an important task. In the last few years, a large number of contributions based on techniques such as neural networks and genetic algorithms have been proposed to face this problem. In this article, we introduce a novel approach to the fuzzy rule learning problem with ant colony optimization (ACO) algorithms. To do so, this learning task is formulated as a combinatorial optimization problem. Our learning process is based on the COR methodology proposed in previous works, which provides a search space that allows us to obtain fuzzy models with a good interpretability-accuracy trade-off. A specific ACO-based algorithm, the Best-Worst Ant System, is used for this purpose due to the good performance shown when solving other optimization problems. We analyze the behavior of the proposed method and compare it to other learning methods and search techniques when solving two real-world applications. The obtained results lead us to remark the good performance of our proposal in terms of interpretability, accuracy, and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.