Several cyanogold complexes react with the binuclear nickel complex [(Ni(dien)(H(2)O))(2)(mu-ox)](PF(6))(2).2H(2)O to give the compounds [(Ni(dien)(H(2)O))(2)(mu-ox)]Br(2) (1), [(Ni(dien)(Au(CN)(2)))(2)(mu-ox)] (2), and [(Ni(dien))(2)(mu-ox)(mu-Au(CN)(4))](PF(6)) (3) (dien, diethilenetriamine; ox, oxalate). In the case of compounds 2 and 3, water displacement by the corresponding cyanogold complex takes place, whereas compound 1 is formed by a substitution of the anion. The crystal structures of compounds 1 and 2 present a 2D arrangement where the layers are connected by van der Waals forces (1) or N-H.Ntbd1;C hydrogen bonds (2), where each binuclear complex is hydrogen bonded to its neighbors, whereas compound 3 presents a novel structure where the tetracyanoaurate acts as a bridging ligand to give a polymeric compound. Magnetic studies of these compounds reveal an antiferromagnetic behavior. Finally, density functional theory (DFT) calculations have been performed on isolated models of compounds 2 and 3 in order to gain some insight about the different behavior of the [Au(CN)(2)](-) and [Au(CN)(4)](-) groups as ligands and proton acceptors in hydrogen bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.